Skip to main content
Log in

Stability of the method of lines

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

It is well known that a necessary condition for the Lax-stability of the method of lines is that the eigenvalues of the spatial discretization operator, scaled by the time stepk, lie within a distanceO(k) of the stability region of the time integration formula ask→0. In this paper we show that a necessary and sufficient condition for stability, except for an algebraic factor, is that the ε-pseudo-eigenvalues of the same operator lie within a distanceO(ε)+O(k) of the stability region ask, ε→0. Our results generalize those of an earlier paper by considering: (a) Runge-Kutta and other one-step formulas, (b) implicit as well as explicit linear multistep formulas, (c) weighted norms, (d) algebraic stability, (e) finite and infinite time intervals, and (f) stability regions with cusps.

In summary, the theory presented in this paper amounts to a transplantation of the Kreiss matrix theorem from the unit disk (for simple power iterations) to an arbitrary stability region (for method of lines calculations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhavalov N.S. (1977): Numerical Methods. Mir Publishers, Moscow

    Google Scholar 

  2. Brenner, P., Thomée, V. (1979): On rational approximation of semigroups, SIAM J. Numer. Anal.16, 684–693

    Google Scholar 

  3. Dekker, K., Verwer, J.G. (1984): Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. North-Holland, Amsterdam

    Google Scholar 

  4. Dahlquist, G., Mingyou, H., LeVeque, R.J. (1983): On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods. Numer. Math.42, 1–13

    Google Scholar 

  5. Di Lena, G., Trigiante, D. (1983): On the stability and convergence of lines method. Rediconti di Matematica Serie VIII,3, 113–126

    Google Scholar 

  6. Di Lena, G., Trigiante, D. (1989): On the spectrum of families of matrices with applications to stability problems. In: A. Bellen, C.W. Gear, E. Russo, eds., Numerical Methods for Ordinary Differential Equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Dunford, N., Schwartz, J.T. (1957): Linear Operators I. Wiley, New York

    Google Scholar 

  8. Friedland, S. (1981): A generalization of the Kreiss matrix theorem, SIAM J. Math. Anal.12, 826–832

    Google Scholar 

  9. Godunov, S.K., Ryabenkii, V.S. (1964): Theory of Difference Schemes. North-Holland, Amsterdam

    Google Scholar 

  10. Gottlieb, D., Orszag, S.A. (1977): Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia

    Google Scholar 

  11. Griffiths, D.F., Christie, I., Mitchell, A.R. (1980): Analysis of error growth for explicit difference schemes in conduction-convection problems. Int. J. Numer Meth. Eng.15, 1075–1081

    Google Scholar 

  12. Higham, D.J., Trefethen, L.N.: Stiffness of ODEs. BIT (to appear)

  13. Hille, E., Phillips, R.S. (1957): Functional Analysis and Semi-Groups. American Mathematical Society, Providence, RI

    Google Scholar 

  14. Kato, T. (1976): Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Kraaijevanger, J.F.B.M., Lenferink, H.W.J., Spijker, M.N. (1987): Stepsize restrictions for stability in the numerical solution of ordinary and partial differential equations. J. Comput. Appl. Math.20, 67–81

    Google Scholar 

  16. Kreiss, H.-O., Wu, L.: On the stability definition of difference approximations for the initial boundary value problem. Commun. Pure Appl. Math. (submitted)

  17. Lenferink, H.W.J., Spijker, M.N. (1988): The relevance of stability regions in the numerical solution of initial value problems. In: K. Strehmel, ed., Numerical Treatment of Differential Equations. Teubner, Leipzig

    Google Scholar 

  18. Lenferink, H.W.J., Spijker, M.N. (1990): A generalization of the numerical range of a matrix. Linear Algebra Appl.140, 251–266

    Google Scholar 

  19. Lenferink, H.W.J., Spijker, M.N. (1991): On a generalization of the resolvent condition of the Kreiss matrix theorem. Math. Comput.57, 211–220

    Google Scholar 

  20. Lenferink, H.W.J., Spijker, M.N. (1991): On the use of stability regions in the numerical analysis of initial value problems. Math. Comput.57, 221–237

    Google Scholar 

  21. Le Veque, R.J., Trefethen, L.N. (1984): On the resolvent condition in the Kreiss matrix theorem. BIT24, 584–591

    Google Scholar 

  22. Lubich, C., Nevanlinna, O. (1991): On resolvent conditions and stability estimates. BIT31, 293–313

    Google Scholar 

  23. McCarthy, C.A., Schwartz, J. (1965): On the norm of a finite boolean algebra of projections and applications to theorems of Kreiss and Morton. Commun. Pure Appl. Math.18, 191–201

    Google Scholar 

  24. Morton, K.W. (1980): Stability of finite difference approximations to a diffusion-convection equation. Int. J. Numer. Meth. Eng.15, 677–683

    Google Scholar 

  25. Parter, S. (1962): Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem. Numer. Math.4, 277–292

    Google Scholar 

  26. Pearcy, C. (1966): An elementary proof of the power inequality for the numerical radius. Mich. Math. J.13, 289–291

    Google Scholar 

  27. Reddy, S.C. (1991): Pseudospectra of Operators and Discretization Matrices and an Application to Stability of the Method of Lines. Ph.D Thesis, MIT

  28. Reddy, S.C., Trefethen, L.N. (1990): Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues. Comput. Meth. Appl. Mech. Eng.80, 147–164

    Google Scholar 

  29. Reichel, L., Trefethen, L.N. (1992): Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl.182, 153–185

    Google Scholar 

  30. richtmyer, R.D., Morton, K.W. (1967): Difference Methods for Initial Value Problems, 2nd ed. Wiley, New York

    Google Scholar 

  31. Sanz-Serna, J.M., Verwer, J.G. (1984): Stability and convergence at the PDE/stiff ODE interface. Appl. Numer. Math.5, 117–132

    Google Scholar 

  32. Spijker, M.N. (1985): Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput.45, 377–392

    Google Scholar 

  33. Spijker, M.N. (1991): On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem. BIT31, 551–555

    Google Scholar 

  34. Tadmor, E. (1981): The equivalence ofL 2-stability, the resolvent condition and strictH-stability. Linear Algebra Appl.41, 151–159

    Google Scholar 

  35. Thomée, V. (1969): Stability theory for partial difference operators. SIAM Review11, 152–195

    Google Scholar 

  36. Trefethen, L.N. (1988): Lax-stability vs. eigenvalue stability of spectral methods. In: K.W. Morton, M.J. Baines, eds., Numerical Methods in Fluid Dynamics III. Clarendon Press, Oxford

    Google Scholar 

  37. Trefethen, L.N. (1991): Pseudospectra of matrices, Report 91/10, Oxford U. Comp. Lab. In: D.F. Griffiths, G.A. Watson, eds., Proceedings of the 14th Dundee Biennial Conference on Numerical Analysis (to appear)

  38. Trefethen, L.N.: Non-Normal Matrices and Pseudospectra. In preparation

  39. Trefethen, L.N., Trummer, M.R. (1987): An instability phenomenon in spectral methods. SIAM J. Numer. Anal.24, 1088

    Google Scholar 

  40. Verwer, J.G., Sanz-Serna, J.M. (1989): Convergence of method of lines approximations to partial differential equations. Computing33, 297–313

    Google Scholar 

  41. Wegert, E., Trefethen, L.N.: From the Buffon needle problem to the Kreiss matrix theorem. Amer. Math. Monthly (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by an NSF Presidential Young Investigator Award to L.N. Trefethen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, S.C., Trefethen, L.N. Stability of the method of lines. Numer. Math. 62, 235–267 (1992). https://doi.org/10.1007/BF01396228

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396228

Mathematics Subject Classification (1991)

Navigation