Skip to main content
Log in

A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we demonstrate that the numerical method of steepest descent fails when applied in a straight forward fashion to the most commonly occurring highly oscillatory integrals in scattering theory. Through a polar change of variables, however, the integral can be reformulated so that it can be solved efficiently using a combination of oscillatory integration techniques and classical quadrature. The approach is described in detail and demonstrated numerically with some oscillatory integral examples. The numerical examples demonstrate that our approach avoids the failure in some special cases, such as in an acoustic scattering model oscillatory integral with observation point located in the illuminated region. This paves the way for using the framework of numerical steepest descent methods on a wider class of problems, like the 3D high frequency scattering from convex obstacles, up to now only handled in a satisfactory way by methods due to Ganesh and Hawkins (J Comp Phys 230:104–125, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For example, an Abel type regularisation will do: \(\int f(x)\mathrm{d}x:=\mathrm{lim}_{s\rightarrow 0}\int f(x)\mathrm{exp}(-s|x|^2)\mathrm{d} x\) [26].

References

  1. Asheim, A.: A combined Filon/asymptotic quadrature method for highly oscillatory problems. BIT 48(3), 425–448 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asheim, A., Huybrechs, D.: Asymptotic analysis of numerical steepest descent with path approximations. Found. Comput. Math. 10(6), 647–671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asheim, A., Huybrechs, D.: Local solutions to high-frequency 2D scattering problems. J. Comput. Phys. 229, 5357–5372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blumenson, L.E.: Classroom notes: a derivation of \(n\)-dimensional spherical coordinates. Am. Math. Mon. 67(1), 63–66 (1960)

    Article  MathSciNet  Google Scholar 

  5. Bouwkamp, C.: Diffraction theory. Rep. Prog. Phys. 17, 35 (1954)

    Article  MathSciNet  Google Scholar 

  6. Bruno, O., Geuzaine, C.: An o(1) integration scheme for three-dimensional surface scattering problems. J. Comput. Appl. Math. 204(2), 463–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deaño, A., Huybrechs, D.: Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112(2), 197–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dominguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Num. Math. 106, 471–510 (2007)

    Google Scholar 

  10. Dominguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 31(4), 1253–1280 (2011)

    Google Scholar 

  11. Ganesh, M., Hawkins, S.C.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230(1), 104–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganesh, M., Langdon, S., Sloan, I.H.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204(2), 363–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huybrechs, D., Olver, S.: Superinterpolation in highly oscillatory quadrature. Found. Comput. Math. 12(2), 203–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huybrechs, D., Vandewalle, S.: The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comp. 76(260), 1955–1980 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44(4), 755–772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461(2057), 1383–1399 (2005)

    Article  MATH  Google Scholar 

  18. Iserles, A., Nørsett, S.P.: On the computation of highly oscillatory multivariate integrals with stationary points. BIT 46(3), 549–566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iserles, A., Nørsett, S.P.: Quadrature methods for multivariate highly oscillatory integrals using derivatives. Math. Comp. 75, 1233–1258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kemp, J.A., Campbell, D.M., Amir, N.: Multimodal radiation impedance of a rectangular duct terminated in an infinite baffle. Acta Acustica united with Acustica 87(1), 11–15 (2001)

    Google Scholar 

  21. Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67, 95–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nédélec, J.: Acoustic and electromagnetic equations: Integral representations for harmonic problems, vol. 144. Springer, New York (2001)

    Google Scholar 

  23. Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2005)

    Article  MathSciNet  Google Scholar 

  24. Olver, S.: On the quadrature of multivariate highly oscillatory integrals over non-polytope domains. Numer. Math. 103(4), 643–665 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pierce, A.: Acoustics: an introduction to its physical principles and applications. Acoustical Soc of America

  26. Wong, R.: Quadrature formulas for oscillatory integral transforms. Numerische Mathematik 39(3), 351–360 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Asheim.

Additional information

Communicated by Lothar Reichel.

Supported by the Norwegian Research Council’s Magne S. Espedahl Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asheim, A. A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals. Bit Numer Math 54, 587–605 (2014). https://doi.org/10.1007/s10543-013-0463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0463-z

Keywords

Mathematics Subject Classification (2010)

Navigation