Skip to main content

Abstract

Based on the error analysis of Extended Filon Method (EFM), we present an adaptive Filon method to calculate highly oscillatory integrals. The main idea is to allow interpolation points depend upon underlying frequency in order to minimize the error. Typically, quadrature error need be examined in two regimes. Once frequency is large, asymptotic behaviour dominates and we need to choose interpolation points accordingly, while for small frequencies good choice of interpolation points is similar to classical, non-oscillatory quadrature. In this paper we choose frequency-dependent interpolation points according to a smooth homotopy function and the accuracy is superior to other EFMs. The basic algorithm is presented in the absence of stationary points but we extend it to cater for highly oscillatory integrals with stationary points. The presentation is accompanied by numerical experiments which demonstrate the power of our approach.

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asheim, A., Huybrechs, D.: Complex Gaussian quadrature for oscillatory integral transforms. IMA J. Numer. Anal. 33(4), 1322–1341 (2013)

    Article  MathSciNet  Google Scholar 

  2. Chandler-Wilde, S.N., Graham, I.G., Langdon S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  Google Scholar 

  3. Deaño, A., Huybrechs, D., Iserles, A.: The kissing polynomials and their Hankel determinants. Technical Report, DAMTP, University of Cambridge (2015)

    Google Scholar 

  4. Domínguez, V., Ganesh, M.: Interpolation and cubature approximations and analysis for a class of wideband integrals on the sphere. Adv. Comput. Math. 39(3–4), 547–584 (2013)

    Article  MathSciNet  Google Scholar 

  5. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 31(4), 1253–1280 (2011)

    Article  MathSciNet  Google Scholar 

  6. Ganesh, M., Langdon, S., Sloan, I.H.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204(2), 363–374 (2007)

    Article  MathSciNet  Google Scholar 

  7. Gao, J., Iserles, A.: A generalization of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals. BIT Numer. Math. 57, 943–961 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gao, J., Iserles, A.: Error analysis of the extended Filon-type method for highly oscillatory integrals. Res. Math. Sci. 4(21/24) (2017). https://doi.org/10.1186/s40687-017-0110-4

  9. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)

    Article  MathSciNet  Google Scholar 

  10. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math. 44(4), 755–772 (2004)

    Article  MathSciNet  Google Scholar 

  11. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 461(2057), 1383–1399 (2005)

    Article  MathSciNet  Google Scholar 

  12. Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67(1), 95–101 (1996)

    Article  MathSciNet  Google Scholar 

  13. Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2006)

    Article  MathSciNet  Google Scholar 

  14. Trevelyan, J., Honnor, M.E.: A numerical coordinate transformation for efficient evaluation of oscillatory integrals over wave boundary elements. J. Integral Equ. Appl. 21(3), 447–468 (2009)

    Article  MathSciNet  Google Scholar 

  15. Van’t Wout, E., Gélat, P., Timo, B., Simon, A.: A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. J. Acoust. Soc. Am. 138(5), 2726–2737 (2015)

    Article  Google Scholar 

  16. Zhao, L.B., Huang, C.M.: An adaptive Filon-type method for oscillatory integrals without stationary points. Numer. Algorithms 75(3), 753–775 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of the first author has been supported by the Projects of International Cooperation and Exchanges NSFC-RS (Grant No. 11511130052), the Key Science and Technology Program of Shaanxi Province of China (Grant No. 2016GY-080) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arieh Iserles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, J., Iserles, A. (2018). An Adaptive Filon Algorithm for Highly Oscillatory Integrals. In: Dick, J., Kuo, F., Woźniakowski, H. (eds) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham. https://doi.org/10.1007/978-3-319-72456-0_19

Download citation

Publish with us

Policies and ethics