Skip to main content
Log in

Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum

  • Original paper
  • Published:
Biologia Plantarum

Abstract

The mechanisms of growth inhibition and antioxidative response were investigated in wheat roots exposed to 300 μM iron together with different zinc concentrations (0, 50, and 250 μM). All Zn concentrations decreased Fe content but increased Zn content in the roots and leaves of Fe-treated seedlings. Compared with Fe stress alone, 50 or 250 μM Zn + Fe treatment stimulated root growth, and increased cell viability but decreased malondialdehyde content, which were correlated with the decreases of total and apoplastic hydrogen peroxide and superoxide anion radical (O2 ·−) content along with apoplastic hydroxyl radical content. Generation of O2 ·− in response to 10 μM diphenylene iodonium suggested that NADPH oxidase activity was lower in Zn + Fe-treated roots than in other roots. In addition, cell wallbound peroxidase, diamine oxidase, and polyamine oxidase in Fe-treated roots were insensitive to Zn addition. Further study showed the stimulation of total superoxide dismutase and glutathione reductase (GR) activities as well as apoplastic catalase, ascorbate peroxidase, and GR in Zn + Fe-stressed roots in comparison with Fe-alone-treated ones. Taken together, Zn could alleviate iron-inhibitory effect on root growth, which might be associated with the decrease of lipid peroxidation, the increase of cell viability and the reductions of reactive oxygen species generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

DAO:

diamine oxidase

DPI:

diphenylene iodonium

EDTA:

ethylenediaminetetraacetic acid

GR:

glutathione reductase

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

NADPH:

nicotinamide adenine dinucleotide

NBT:

nitrobluetetrazolium

O2 ·− :

superoxide anion radical

·OH:

hydroxyl radical

PAO:

polyamine oxidase

PBS:

phosphate buffer solution

PM:

plasma membrane

POD:

peroxidase

PVP:

polyvinylpyrrolidone

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Achary, V.M.M., Jena, S., Panda, K.K., Panda, B.B.: Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.. — Ecotoxicol. Environ. Safety 70: 300–310, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Achary, V.M.M., Patnaik, A.R., Panda, B.B.: Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress. — Ecotoxicol. Environ. Safety 75: 16–26, 2012.

    Article  CAS  Google Scholar 

  • Aebi, H.: Catalase in vitro. — Method Enzymol. 105: 121–126, 1984.

    Article  CAS  Google Scholar 

  • Asthir, B., Duffus, C.M., Smith, R.C., Spoor, W.: Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling. — J. exp. Bot. 53: 677–682, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Auh, C.K., Murphy, T.M.: Plasma membrane redox enzyme is involved in the synthesis of O2 •- and H2O2 by Phytophthora elicitor-stimulated rose cells. — Plant Physiol. 107: 1241–1247, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azooz, M.M., Abou-Elhamed, M.F., Al-Fredan, M.A.: Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. — Aust. J. Crop Sci. 6: 688–694, 2012.

    CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.M., Lin, C.C., Kao, C.H.: Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. — Bot. Bull. Acad. sin. 41: 99–103, 2000.

    CAS  Google Scholar 

  • Cherif, J., Mediouni, C., Ammar, W.B., Jemal, F.: Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). — J. environ. Sci. 23: 837–844, 2011.

    Article  CAS  Google Scholar 

  • Clabeaux, B.L., Navarro, D.A., Aga, D.S., Bisson, M.A.: Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. — Ecotoxicol. Environ. Safety 98: 236–243, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Córdoba-Pedregosa, M.C., Villalba, J.M., Córdoba, F., González-Reyes, J.A.: Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L.. — J. exp. Bot. 56: 685–694, 2005.

    Article  Google Scholar 

  • Cvikrová, M., Gemperlová, L., Dobrá, J., Martincová, O., Prásil, I., Gubis, J., Vanková, R.: Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. — Plant Sci. 182: 49–58, 2012.

    Article  PubMed  Google Scholar 

  • De Oliveira-Jucoski, G., Cambraia, J., Riveiro, C., Alves-De Oliveira, J., Oliveira-De Paula, S., Oliva, M.A.: Impact of iron toxicity on oxidative metabolism in young Eugenia uniflora L. plants. — Acta Physiol. Plant. 35: 1645–1657, 2013.

    Article  Google Scholar 

  • Dhindsa, R.S., Matowe, W.: Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. — J. exp. Bot. 32: 79–91, 1981.

    Article  CAS  Google Scholar 

  • Dos Santos, W.D., Ferrarese, M.L.L., Nakamura, C.V., Mourão, K.S.M., Mangolin, C.A., Ferrarese-Filho, O.: Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. — J. chem. Ecol. 34: 1230–1241, 2008.

    Article  PubMed  Google Scholar 

  • Dunand, C., Crèvecoeur, M., Penel, C.: Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. — New Phytol. 174: 332–341, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. exp. Bot. 66: 418–424, 2009.

    Article  CAS  Google Scholar 

  • Finger-Teixeira, A., Ferrarese, M.L.L., Soares, A.R., De Silva, D., Ferrarese-Filho, O.: Cadmium-induced lignification restricts soybean root growth. — Ecotoxicol. Environ. Safety 73: 1959–1964, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Greger, M.: Metal availability and bioconcentration in plants. — In: Hagemeyer, J. (ed.): Heavy Metals Stress in Plants. From Molecules to Ecosystems. Pp. 1–27. Springer, Berlin - Heidelberg 1999.

    Google Scholar 

  • Halliwell, B., Gutteridge, J., Aruoma, O.I.: The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. — Anal. Biochem. 165: 215–219, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine. — Clarendon Press, Oxford 1993.

    Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C.: The chemistry of free radicals and related ‘reactive species’. — Free Radicals Biol. Med. 3: 220, 1999.

    Google Scholar 

  • Israr, M., Jewell, A., Kumar, D., Sahi, S.V.: Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. — J. Hazard. Mater. 186: 1520–1526, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian, T., Moon, J.C., Kim, C., Manoharan, K., Kim, W.: Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. — Aust. J. Crop. Sci. 5: 709–725, 2011.

    CAS  Google Scholar 

  • Kranner, I., Roach, T., Beckett, R.P., Whitaker, C., Minibayeva, F.V.: Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. — J. Plant Physiol. 167: 805–811, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T.M., Lin, Y.H.: Changes in soluble and cell wall-bound peroxidase activities with growth in anoxia-treated rice (Oryza sativa L.) coleoptiles and roots. — Plant Sci. 106: 1–7, 1995.

    Article  CAS  Google Scholar 

  • Li, X.N., Ma, H.Z., Jia, P.X., Wang, J., Jia, L.Y., Zhang, T.G., Yang, Y.L., Chen, H.J., Wei, X.: Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L.. — Ecotoxicol. Environ. Safety 86: 47–53, 2012a.

    Article  CAS  PubMed  Google Scholar 

  • Li, X.N., Yang, Y.L., Zhang, J., Jia, L.Y., Li, Q.X., Zhang, T.G., Qiao, K.X., Ma, S.C.: Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L.. — Ecotoxicol. Environ. Safety 86: 198–203, 2012b.

    Article  CAS  PubMed  Google Scholar 

  • Liu, N., Lin, Z.F., Mo, H.: Metal (Pb, Cd, and Cu)-induced reactive oxygen species accumulations in aerial root cells of the Chinese banyan (Ficus microcarpa). — Ecotoxicology 21: 2004–2011, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Ma, B., Gao, L., Zhang, H., Gui, J., Shen, Z.: Aluminuminduced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. — Plant Cell Rep. 31: 687–696, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari, R., Dubey, R.S.: Nickel-induced oxidative stress and the role of antioxidative defense in rice seedlings. — Plant Growth Regul. 59: 37–49, 2009.

    Article  CAS  Google Scholar 

  • Matsumoto, H., Motoda, H.: Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. — Plant Sci. 185: 1–8, 2012.

    Article  PubMed  Google Scholar 

  • Naik, B.I., Goswami, R.G., Srivastawa, S.K.: A rapid and sensitive colorimetric assay of amine oxidase. — Anal. Biochem. 111: 146–148, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nenova, V.: Effect of iron supply on growth and photosystem II efficiency of pea plants. — Gen. appl. Plant Physiol. 2006 Special issue: 81–90, 2006.

    Google Scholar 

  • Pasqualini, S., Cresti, M., Del Casino, C., Faleri, C., Frenguelli, G., Tedeschini, E., Ederli, L.: Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica. — Biol. Plant. 59: 735–744, 2015.

    Article  CAS  Google Scholar 

  • Qiao, X.Q., Zheng, Z.Z., Zhang, L.F., Wang, J.H., Shi, G.X., Xu, X.Y.: Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: Subcellular distribution, polyamines and proline. — Chemosphere 120: 179–187, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Ranieri, A., Castagna, A., Baldan, B., Soldatini, G.F.: Iron deficiency differently affects peroxidase isoforms in sunflower. — J. exp. Bot. 354: 25–35, 2001.

    Article  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P.: Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. — Plant Physiol. 110: 125–136, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remans, T., Opdenakker, K., Smeets, K., Matgijsen, D., Vangronsveld, J., Cuypers, A.: Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. — Funct. Plant Biol. 37: 532–544, 2010.

    Article  CAS  Google Scholar 

  • Schaedle, M., Bassham, J.A.: Chloroplast glutathione reductase. — Plant Physiol. 59: 1011–1012, 1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergiev, I., Alexieva, V.: Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. — Compt. rend. Acad. Bulg. Sci. 51: 121–124, 1997.

    Google Scholar 

  • Sinha, S., Basant, A.: Iron-induced oxidative stress in a macrophyte: a chemometric approach. — Ecotoxicol. Environ. Safety 72: 585–595, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Talaat, N.B., Shawky, B.T.: 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). — Environ. exp. Bot. 82: 80–88, 2012.

    Article  CAS  Google Scholar 

  • Tamás, L., Dudiková, J., Durceková, K., Halušková, L., Huttová, J., Mistrík, I.: Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. — Protoplasma 235: 17–25, 2009.

    Article  PubMed  Google Scholar 

  • Tewari, R.K., Hadacek, F., Sassmann, S., Lang, I.: Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. — Environ. exp. Bot. 91: 74–83, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thounaojam, T.C., Panda. P., Mazumeder, P., Kumar, D., Sharma, G.D., Sahoo, L., Panda, S.K.: Corrigendum to “Excess copper induced oxidative stress and response of antioxidants in rice”. — Plant Physiol. Biochem. 53: 33–39, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Turhan, E., Aygogan, C., Baykul, A., Akoglu, A., Evrennosoglu, Y., Ergin, S.: Apoplastic antioxidant enzymes in the leaves of two strawberry cultivars and their relationship to cold-hardiness. — Not. Bot. Hort. Agrobot. 40: 114–122, 2012.

    CAS  Google Scholar 

  • Upadhyay, R.K., Panda, S.K.: Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L.. — J. Hazard. Mater. 175: 1081–1084, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Vallee, B.L., Falchuk, K.H.: The biochemical basis of zinc physiology. — Physiol. Rev. 73: 79–118, 1993.

    CAS  PubMed  Google Scholar 

  • Verma, K., Shekhawat, G.S., Sharma, A., Mehta, S.K., Sharma, V.: Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of Brassica juncea (L.) Czern. — Plant Cell Rep. 27: 1261–1269, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Li, W.H., Zhang, C.B., Ke, S.S.: Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei. — J. environ. Sci. 22: 1916–1922, 2010.

    Article  CAS  Google Scholar 

  • Wen, J.F., Deng, M.H., Gong, M.: Cd2+ stress induces two waves of H2O2 accumulation associated with ROSgenerating system and ROS-scavenging system in cultured tobacco cells. — Aust. J. Crop Sci. 6: 846–853, 2012.

    CAS  Google Scholar 

  • Yang, H.Y., Shi, G.X., Wang, H.X., Xu, Q.S.: Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. — Aquat. Toxicol. 100: 282–288, 2010.

    Article  PubMed  Google Scholar 

  • Zanardo, D.I.L., Lima, R.B., Ferrarese, M.L.L., Bubna, G.A., Ferrarese-Filho, O.: Soybean root growth inhibition and lignification induced by p-coumaric acid. — Environ. exp. Bot. 66: 25–30, 2009.

    Article  CAS  Google Scholar 

  • Zhao, H.J., Wu, L.Q., Chai, T.Y., Zhang, Y.X., Tan, J.J., Ma, S.W.: The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganesehyperaaccumulator Phytolacca americana. — J. Plant Physiol. 169: 1243–1252, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q.: The measurement of malondialdehyde in plants. — In: Zhou, Q. (ed.): Methods in Plant Physiology. Pp. 173–174. Agricultural Press, Beijing 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Yang.

Additional information

Acknowledgments: This work was financially supported by the National Natural Science Foundation of China (Nos. 31470464, 31360094, 31460142), and the Science and Technology Plan Project of Gansu Province (144FKCA059). The first two authors contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Duan, X.H., Yang, Y.Y. et al. Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum . Biol Plant 61, 733–740 (2017). https://doi.org/10.1007/s10535-017-0720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0720-0

Additional key words

Navigation