Skip to main content
Log in

Molecular responses to drought stress in plants

  • Mini Review
  • Published:
Biologia Plantarum

Abstract

Drought is a severe environmental constraint to plant productivity. Being a multidimensional stress, it triggers a wide variety of plant responses ranging from physiological, biochemical to molecular levels. One of the inevitable consequences of drought stress is an increase in reactive oxygen species (ROS) production in different cellular compartments, namely the chloroplasts and mitochondria. This enhanced ROS production is, however, kept under tight control by a versatile and cooperative antioxidant system that modulates intracellular ROS content and sets the redoxstatus of the cell. Furthermore, ROS production under stresses functions as an alarm signal that triggers defence or acclimation. Specific signal transduction pathways involve, e.g., H2O2 as a secondary messenger. ROS signalling under drought is linked to abscisic acid (ABA) and Ca2+ fluxes. At molecular levels, several drought-responsive genes, transcription factors, aquaporins, late embryogenesis abundant proteins, heat shock proteins, and dehydrins have been identified. This review discusses recent understanding on molecular responses and protective mechanisms of drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ALA:

5-aminolevulinic acid

AOX:

alternative oxidase

AREB:

ABA-responsive element binding

DREB:

dehydration responsive element binding

Hsps:

heat shock proteins

LEA:

late embryogenesis abundant

PGPRs:

plant growth promoting rhizobacteria

PS:

photosystem

ROS:

reactive oxygen species

Rubisco:

ribulose-1,5-bisphosphate carboxylase

RWC:

relative water content

ZFP:

zinc finger protein

References

  • Afzal, Z., Howton, T.C., Sun, Y., Mukhtar, M.S.: The roles of aquaporins in plant stress responses. — J. Dev. Biol. 9: 1–22, 2016.

    Google Scholar 

  • Akram, M.: Growth and yield components of wheat under water stress of different growth stages. — Bangladesh J. agr. Res. 36: 455–468, 2011.

    Google Scholar 

  • Akram, N.A., Waseem, M., Ameen, R., Ashraf, M.: Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. — Acta Physiol. Plant. 38: 1–10, 2016.

    Article  CAS  Google Scholar 

  • Andrésa, Z., Pérez-Hormaechea, J., Leidia, E.O., Schlücking, K., Leonie, S., McLachlanc, D.H., Schumacher, K., Hetherington, A.M., Kudlab, J., Cuberoa, B., Pardo, J.M.: Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. — Proc. nat. Acad. Sci. USA 111: 1806–1814, 2014.

    Article  Google Scholar 

  • Anithakumari, A.M., Nataraja, K.N., Visser, R.G., Linden, V.C.G.: Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. — Mol. Breed. 30: 1413–1429, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum, S.A., Xie, X., Wang, L.: Morphological, physiological and biochemical responses of plants to drought stress. — Afr. J. agr. Res. 6: 2026–2032, 2011.

    Google Scholar 

  • Ashraf, M., Harris, P.J.C.: Photosynthesis under stressful environments: an overview. — Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Avramova, V., Elgawad, H.A, Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., Beemster G T.S.: Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. — Plant Physiol. 169: 1382–1396, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Batra, N.G., Sharma, V., Kumari, N.: Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. — J. Plant Interact. 9: 712–721, 2014.

    Article  CAS  Google Scholar 

  • Brestič, M., Živčák, M.: PS II fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. - In: Rout, G.R., Das, A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87–131, Springer, New Delhi 2013.

    Chapter  Google Scholar 

  • Budak, H., Hussain, B., Khan, Z., Ozturk, N.Z., Ullah, N.: From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. — Front. Plant Sci. 6: 1012, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J., Salvucci, M.E.: Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. — Environ. Exp. Bot. 83: 1–11, 2012.

    Article  CAS  Google Scholar 

  • Chakraborty, U., Pradhan, B.: Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. — Braz. J. Plant Physiol. 24: 117–130, 2012.

    Article  CAS  Google Scholar 

  • Chugh, V., Kaur, N., Gupta, A.: Evolution of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. — Indian J. Biochem. Biophys. 48: 47–53, 2011.

    CAS  PubMed  Google Scholar 

  • Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., Feller, U.: Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. — Acta Physiol. Plant. 31: 1129–1138, 2009.

    Article  CAS  Google Scholar 

  • Driever, S.M., Baker, N.R.: The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. — Plant Cell Environ. 34: 837–846, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Melo, A.C., Ma, C., Reid, M. S., Jiang, Z.: Overexpression of an ABA biosynthesis gene using a stressinducible promoter enhances drought resistance in petunia. — Hort. Res. 2: 11–13, 2015.

    Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A.: Plant drought stress: effects, mechanisms and management. — Agron. Sustain. Dev. 29: 185–212, 2009.

    Article  Google Scholar 

  • Fischer, B.B., Hideg, E., Krieger-Liszkay, A.: Production, detection, and signaling of singlet oxygen in photosynthetic organisms. — Antioxid. Redox Signal. 18: 2145–2162, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, H., Zhu, J.K: Osmotic stress signaling via protein kinases. — Cell Mol. Life Sci. 69: 3165–3173, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Giri, J.: Glycinebetaine and abiotic stress tolerance in plants. — Plant Signal. Behav. 6: 1746–1751, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.: Cytokinins: metabolism and function in plant adaptation to environmental stresses. — Trends Plant Sci. 17: 172–179, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Harba, A., Awada, D., Samarahb, N.: Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. — J. Plant Interact. 10: 109–116, 2015.

    Article  Google Scholar 

  • Hayes, M., Svoboda, M., Wall, N., Widhalm, M.: The Lincoln declaration on drought indices: universal meteorological drought index recommended. — Bull. amer. meteorol. Soc. 92: 485–488, 2010.

    Article  Google Scholar 

  • Hu, Y., Wang, B., Hu, T., Chen, H., Li, H., Zhang, W., Zhong, Y., Hu, H.: Combined action of an antioxidant defence system and osmolytes on drought tolerance and post-drought recovery of Phoebe zhennan S. Lee saplings. — Acta Physiol. Plant. 37: 1–13, 2015.

    Article  Google Scholar 

  • Ings, J., Mur, L.A., Robson, R.H., Bosch, M.: Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. — Front. Plant Sci. 4: 468, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iordachescu, M., Imai, R.: Trehalose biosynthesis in response to abiotic stresses. — J. Integ. Plant Biol. 50: 1223–1229, 2008.

    Article  CAS  Google Scholar 

  • Jaleel, C.A., Gopi, R., Sankar, B., Gomathinayagam, M., Panneerselvam, R.: Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. — Comp. Rend. Biol. 331: 42–47, 2008.

    Article  Google Scholar 

  • Joliot, P., Johnson, G.N.: Regulation of cyclic and linear electron flow in higher plants. — Proc. nat. Acad. Sci. USA 108: 13317–13322, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewsuksaeng, S.: Chlorophyll degradation in horticultural crops. — Walailak J. Sci. Technol. 8: 9–19, 2011.

    Google Scholar 

  • Kannan, N.D., Kulandaivelu, G.: Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. — J. med. Plants Res. 5: 3929–3935, 2011.

    CAS  Google Scholar 

  • Kar, R.K.: Plant responses to water stress: role of reactive oxygen species. — Plant Signal. Behav. 6: 1741–1745, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karami, A., Shahbazi, M., Niknam, V., Shobbar, Z.S., Tafreshi, R.S., Abedini, R.: Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. — Acta Physiol. Plant. 35: 2289–2297, 2013.

    Article  CAS  Google Scholar 

  • Kaur, G., Asthir, B.: Proline: a key player in plant abiotic stress tolerance. — Biol. Plant. 59: 609–619, 2015.

    Article  CAS  Google Scholar 

  • Khan, M.S., Ahmad, D., Khan, M.A.: Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. — Electron. J. Biotech. 18: 257–266, 2015.

    Article  CAS  Google Scholar 

  • Kim, T.H.: Mechanism of ABA signal transduction: agricultural highlights for improving drought tolerance. — J. Plant Biol. 57: 1–8, 2014.

    Article  Google Scholar 

  • Kondrák, M., Marincs, F., Antal, F., Juhász, Z., Bánfalvi, Z.: Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. — BMC Plant Biol. 12: 74, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasensky, J., Jonak, C.: Drought, salt and temperature stressinduced metabolic rearrangements and regulatory networks. — J. Exp. Bot. 63: 1593–1608, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik, A., Wawer, I., Krzywińska, E., Bucholc, M., Dobrowolska, G.: SnRK2 protein kinases-key regulators of plant response to abiotic stresses. — OMICS 15: 859–872, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata, C., Prasad, M.: Role of DREBs in regulation of abiotic stress responses in plants. — J. exp. Bot. 62: 4731–4748, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Le Gall, H., Philippe, F., Domon, J.M., Françoise, G., Jérôme, P., Rayon, C.: Cell wall metabolism in response to abiotic stress. — Plants 4: 112–166, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H.W., Zang, B.S., Deng, X.W., Wang, X.P.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. — Planta 234: 1007–1018, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Licausi, F., Ohme-Takagi, M., Perata, P.: APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. — New Phytol. 199: 639–649, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J.H., Kim, S.D.: Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. — Plant Pathol. J. 29: 201–208, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Lv, Y., Wan, X.R., Li, L.M., Hu, B.: Cloning and expression analysis of cDNAs encoding ABA 8’-hydroxylase in peanut plants in response to osmotic stress. — PLoS ONE 9: 97025, 2014.

    Article  Google Scholar 

  • Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R., Alagu, L.G.M., Panneerselvam, R.: Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. — Colloids Surf. B: Biointerf. 59: 141–149, 2007.

    Article  CAS  Google Scholar 

  • Marok, M., Tarrago, L., Ksas, B., Henri, P., Abrous-Belbachir, O., Havaux, M., Rey, P.: A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. — J. Plant Physiol. 170: 633–645, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Blumwald, E.: The roles of ROS and ABA in systemic acquired acclimation. — Plant Cell 27: 64–70, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mssacci, A., Nabiev, S.M., Pietrosanti, L., Nematov, S.K., Chernikova, T.N., Thor, K., Leipner, J.: Response of photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. — Plant Physiol. Biochem. 46: 189–195, 2008.

    Article  Google Scholar 

  • Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. — Front. Plant Sci. 5: 1–7, 2014.

    Article  Google Scholar 

  • Nelson, G.C.D.: Mensbrugghe, V., Ahammad, H. Agriculture and climate change in global scenarios: why don't the models agree. — Agr. Econ. 45: 85–101, 2014.

    Article  Google Scholar 

  • Nezhadahmadi, A., Prodhan, Z., Faruq, G.: Drought tolerance in wheat. — Sci. World J. 13: 1–12, 2013.

    Article  Google Scholar 

  • Ng, L.M., Melcher, K., Teh, B.T., Xu, H.E.: Abscisic acid perception and signaling: structural mechanisms and applications. — Acta pharmacol. sin. 35: 567–584, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T.X., Sticklen, M.: Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L.). — Adv. Crop Sci. Technol. 1: 1–11, 2013.

    Google Scholar 

  • Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M. A., Van Ha, C., Fujita, Y., Tanaka, M.: Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. — Proc. nat. Acad. Sci. USA 110: 4840–4845, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuccio, M.L, Wu, J., Mowers, R., Zhou, H.P., Meghji, M., Primavesi, L.F., Paul, M.J., Chen, X., Gao, Y., Haque, E., Basu, S.S., Lagrimini, L.M: Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in wellwatered and drought conditions. — Natur. Biotechnol. 33: 862–869, 2015.

    Article  CAS  Google Scholar 

  • Obidiegwu, J.E., Bryan, G.J., Jones, H.G., Prashar, A.: Coping with drought: stress and adaptive responses in potato and perspectives for improvement. — Front. Plant Sci. 6: 542, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, LP.: Response of plants to water stress. — Plant Physiol. 5: 1–8, 2014.

    Google Scholar 

  • Phuong, N.D., Tuteja, N., Nghia, P.T., Hoi, P.X.: Identification and characterization of a stress-inducible gene OsNLI-IF enhancing drought tolerance in transgenic tobacco. — Curr. Sci. 109: 541–551, 2015.

    Google Scholar 

  • Potopová, V., Boroneant, C., Boincean, B., Soukup, J.: Impact of agricultural drought on main crop yields in the Republic of Moldova. — Int. J. Climatol. 36: 2063–2082, 2016.

    Article  Google Scholar 

  • Praba, M.L., Cairns, J.E., Babu, R.C., Lafitte, H.R: Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. — J. Agron. Crop Sci. 195: 30–46, 2009.

    Article  Google Scholar 

  • Prasad, P.V.V., Pisipati, S.R., Momčilović, I., Ristic, Z.: Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. — J. Agron. Crop Sci. 197: 430–441, 2011.

    Article  CAS  Google Scholar 

  • Queval, G., Neukermans, J., Vanderauwera, S., Van Breusegem, F., Noctor, G.: Day length is a key regulator of transcriptomic responses to both CO2 and H2O2 in Arabidopsis. — Plant Cell Environ. 35: 374–387, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., Von Korff, M.: Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). — J. exp. Bot. 64: 3201–3212, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z., Zhang, Z.: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. — Plant Biotechnol. J. 12: 468–79, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Shatil-Cohen, A., Attia, Z., Moshelion, M.: Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? — Plant J. 67: 72–80, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, M.H., Al-Khaishany, M.Y., Qutami, M.A.A., Whaibi, M.H.A, Grover, A., Ali, H.M., Wahibi, M.S.A.: Morphological and physiological characterization of different genotypes of faba bean under heat stress. — Saudi J. Biol. Sci. 22: 656–66, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D., Laxmi, A.: Transcriptional regulation of drought response: a tortuous network of transcriptional factors. — Front. Plant Sci. 6: 895, 2015.

    PubMed  PubMed Central  Google Scholar 

  • Škodáček, Z., Prášil, I.T.: New possibilities for research of barley (Hordeum vulgare L.) drought resistance. — Úroda 8: 24–29, 2011.

    Google Scholar 

  • Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., Mittler, R.: Abiotic and biotic stress combinations. — New Phytol. 203: 32–43, 2014.

    Article  PubMed  Google Scholar 

  • Szabados, L., Savouré, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 1360–85, 2009.

    Google Scholar 

  • Todaka, D., Shinozaki, K., Yamaguchi-Shinozaki, K.: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. — Front. Plant Sci. 6: 1–20, 2015.

    Article  Google Scholar 

  • Veeranagamallaiah, G., Prasanthi, J., Reddy, K.E., Pandurangaiah, M., Babu, O.S., Sudhakar, C.: Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth. — J. Plant Physiol. 168: 671–677, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. — Amino Acids 35: 753–759, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Verslues, P.E., Sharma, S.: Proline metabolism and its implications for plant-environment interaction. — Arabidopsis Book 8: 140, 2010.

    Article  Google Scholar 

  • Vurukonda, S.S., Vardharajula, S., Shrivastava, M., Skz, A.: Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. — Microbiol. Res. 184: 13–24, 2016.

    Article  PubMed  Google Scholar 

  • Wang, M., Li, P., Li, C., Pan, Y., Jiang, X., Zhu, D., Zhao, Q., Yu, J.J.: SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. — BMC Plant Biol. 14: 290, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, K., Chen S., Li, T., Ma, X., Liang, X., Ding, X., Liu, H., Luo, L.: OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. — BMC Plant Biol. 15: 141, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Han, L., Huang, B.: Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. — J. amer. Soc. hort. Sci. 136: 247–255, 2011.

    CAS  Google Scholar 

  • Yang, Y.Z, Tan, B.C.: A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. — PLoS ONE 9: 87283, 2014.

    Article  Google Scholar 

  • Zandkarimi, H., Ebadi, A., Salami, S.A, Alizade, H., Baisakh, N.: Analyzing the Expression Profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). — PLoS ONE 10: 134288, 2015.

    Article  Google Scholar 

  • Zhou, Y., Lam, H.M., Zhang, J.: Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. — J. exp. Bot. 58: 1207–1217, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zlatev, Z., Lidon, F.C.: An overview on drought induced changes in plant growth, water relations and photosynthesis. — Emir. J. Food Agr. 24: 57–72, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Asthir.

Additional information

Acknowledgement: We thanks Dr. Muhammad Farooq, the Department of Agronomy, University of Agriculture, Faisalabad, Pakistan for editing our review thoroughly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Asthir, B. Molecular responses to drought stress in plants. Biol Plant 61, 201–209 (2017). https://doi.org/10.1007/s10535-016-0700-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0700-9

Additional key words

Navigation