Skip to main content
Log in

Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Roles for nitric oxide (NO) and reactive oxygen species (ROS) during pollen-tube growth have been well established in angiosperms, but there remains lack of information regarding their potential signalling roles in pollen tubes in gymnosperms. Here, the pollen-tube elongation of Arizona cypress (Cupressus arizonica Greene) was investigated. Nitric oxide, ROS, and actin were detected using their respective fluorescent probes. Both NO and ROS were observed in the nuclei of generative cells and pollen-tube cells, and in the cytoplasm in the tip region. An intracellular NO content in the pollen cells was lowered using an NO scavenger or an NO-synthase inhibitor. Similarly, an endogenous ROS content in the pollen cells was lowered using an NAD(P)H oxidase inhibitor. These treatments reduced pollen germination and pollen-tube growth, and induced severe morphological abnormalities. Inhibition of NO and ROS accumulation also severely disrupted the actin cytoskeleton in the pollen tubes. These data indicate that NO and ROS had signalling roles in pollen germination and pollen-tube formation in cypress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BK medium:

Brewbaker and Kwack liquid medium

[Ca2+]i :

intracellular Ca2+ concentration

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

DAF-FM:

4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate

DCFH2-DA:

2′7′-dichlorodihydrofluorescein diacetate

DPI:

diphenyleneiodonium chloride

L-NNA:

Nω-nitro-L-arginine

NOS:

nitric oxide synthase

ROS:

reactive oxygen species

References

  • Arilla, M.C., Ibarrola, I., Garcia, R., De la Hoz, B., Martinez, A.: Quantification of the major allergen from cypress (Cupressus arizonica) pollen, Cup a 1, by monoclonal antibody-based ELISA. — Int. Arch. Allergy Immunol. 134: 10–16, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Åström, H., Sorri, O., Raudaskoski, M.: Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. — Sex. Plant Reprod. 8: 61–69, 1995.

    Article  Google Scholar 

  • Bell, E., Takeda, S., Dolan, L.: Reactive oxygen species in growth and development. — In: Rio, L.A., Puppo, A. (ed.): Reactive Oxygen Species in Plant Signalling. Pp. 43–53. Springer, Berlin — Heidelberg 2009.

    Chapter  Google Scholar 

  • Bhattacharjee, S.: The language of reactive oxygen species signaling in plants. — J. Bot. 2012: 1–22, 2012.

    Article  Google Scholar 

  • Boisson-Dernier, A., Lituiev, D.S., Nestorova, A., Franck, C.M., Thirugnanarajah, S., Grossniklaus, U.: ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. — PLoS Biol. 11: e1001719, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Bright, J., Hiscock, S.J., James, P.E., Hancock, J.T.: Pollen generates nitric oxide and nitrite: a possible link to polleninduced allergic responses. — Plant Physiol. Biochem. 47: 49–55, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Carol, R.J., Dolan, L.: The role of reactive oxygen species in cell growth: lessons from root hairs. — J. exp. Bot. 57: 1829–1834, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chichiriccò, G., Pacini, E.: Cupressus arizonica pollen wall zonation and in vitro hydration. — Plant Syst. Evol. 270: 231–242, 2008.

    Article  Google Scholar 

  • Chichiriccò, G., Spanò, L., Torraca, G., Tartarini, A.: Hydration, sporoderm breaking and germination of Cupressus arizonica pollen. — Plant Biol. 11: 359–368, 2009.

    Article  PubMed  Google Scholar 

  • Danti, R., Della Rocca, G., Calamassi, R., Mori, B., Mariotti Lippi, M.: Insights into a hydration regulating system in Cupressus pollen grain. — Ann. Bot. 108: 299–306, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., Cheung, A.Y.: Reactive oxygen species mediate pollen-tube rupture to release sperm for fertilization in Arabidopsis. — Nat. Commun. 5: 3129, 2014.

    PubMed  Google Scholar 

  • Fernando, D.D., Lazzaro, M.D., Owens, J.N.: Growth and development of conifer pollen tubes. — Sex. Plant Reprod. 18: 149–162, 2005.

    Article  Google Scholar 

  • Foissner, I., Wendehenne, D., Langebartels, C., Durner, J.: In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. — Plant J. 23: 817–824, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y.: The actin cytoskeleton and signaling network during pollen tube tip growth. — J. Integr. Plant Biol. 52: 131–137, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Hepler, P.K., Vidali, L., Cheung, A.Y.: Polarized cell growth in higher plants. — Annu. Rev. Cell dev. Biol. 17: 159–187, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison, J., Heslop-Harrison, Y.: Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. — J. Cell Sci. 94: 319–325, 1989.

    Google Scholar 

  • Heslop-Harrison, J., Heslop-Harrison, Y., Shivanna, K.R.: The evaluation of pollen quality and a further appraisal of flourochromatic (FCR) test procedure. — Theor. appl. Genet. 67: 367–375, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Kasprowicz, A., Szuba, A., Volkmann, D., Baluska, F., Wojtaszek, P.: Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. — J. exp. Bot. 60: 1605–1617, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaya, H., Nakajima, R., Iwano, M., Kanaoka, M.M., Kimura, S., Takeda, S., Kawarazaki, T., Senzaki, E., Hamamura, Y., Higashiyama, T., Takayama, S., Abe, M., Kuchitsu, K.: Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. — Plant Cell 26: 1069–1080, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kojima, H., Nakatsubo, N., Kikuchi, K., Kawaahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., Nagano, T.: Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. — Anal. Chem. 70: 2446–2453, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Lassig, R., Gutermuth, T., Bey, T.D., Konrad, K.R., Romeis, T.: Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. — Plant J. 78: 94–106, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro, M.D., Cardenas, L., Bhatt, A.P., Justus, C.D., Phillips, M.S., Holdaway-Clarke, T.L., Hepler, P.: Calcium gradients in conifer pollen tubes; dynamic properties differ from those seem in angiosperms. — J. exp. Bot. 56: 2619–2628, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., Hepler, P.K.: Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. — Planta. 221: 95–104, 2005.

    Article  CAS  PubMed  Google Scholar 

  • McInnis, S.M., Desikan, R., Hancock, J.T., Hiscock, S.J.: Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? — New Phytol. 172: 221–228, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Misra, A.N., Misra, M., Singh, R.: Nitric oxide: A ubiquitous signaling molecule with diverse role in plants. — Afr. J. Plant Sci. 5: 57–74, 2011.

    CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. — Trends Plant Sci. 9: 490–498, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, M., Lindermayr, C., Durner, J., Klessig, D.F.: NO synthesis and signaling in plants — where do we stand? — Physiol. Plant. 138: 372–383, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Mori, I.C., Schroeder, J.I.: Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. — Plant Physiol. 135: 702–708, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasqualini, S., Tedeschini, E., Frenguelli, G., Wopfner, N., Ferreira, F., D’Amato, G., Ederli, L.: Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen. — Environ. Poll. 159: 2823–2830, 2011.

    Article  CAS  Google Scholar 

  • Potocký, M., Jones, M.A., Bezvoda, R., Smirnoff, N., Žárský, V.: Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. — New Phytol. 174: 742–751, 2007.

    Article  PubMed  Google Scholar 

  • Prado, A.M., Colaço, R., Moreno, N., Silva, A.C., Feijó, J.A.: Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. — Mol. Plant. 1: 703–714, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Prado, A.M., Feijo, J.A.: Calcium, NO, and cGMP signaling in plant cell polarity. — In Hayat, S., Mori, M., Pichtel, J., Ahmad, A. (ed.): Nitric Oxide in Plant Physiology. Pp. 31–50. Wiley, Weinheim 2009.

    Chapter  Google Scholar 

  • Prado, A.M., Porterfield, D.M., Feijó, J.A.: Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. — Development 131: 2707–2714, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Qu, X., Jiang, Y., Chang, M., Liu, X., Zhang, R., Huang, S.: Organization and regulation of the actin cytoskeleton in the pollen tube. — Front. Plant Sci. 5: 786, 2015.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren, H., Xiang, Y.: The function of actin-binding proteins in pollen tube growth. — Protoplasma 230: 171–182, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, E.A., Cunha, F.Q., Tamashiro, W.M.S.C., Martins, I.S.: Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. — FEBS Lett. 445: 283–286, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Sagi, M., Fluhr, R.: Production of reactive oxygen species by plant NADPH oxidases. — Plant Physiol. 141: 336–340, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Šamaj, J., Baluška, F., Menzel, D.: New signalling molecules regulating root hair tip growth. — Trends Plant Sci. 9: 217–220, 2004.

    Article  PubMed  Google Scholar 

  • Setsukinai, K., Urano, Y., Kakinuma, K., Mmajima, H.J., Nagano, T.: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. — J. biol. Chem. 278: 3170–3175, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Smirnova, A.V., Matveyeva, N.P., Yermakov, I.P.: Reactive oxygen species are involved in regulation of pollen wall cytomechanics. — Plant Biol. 16: 252–257, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Speranza, A., Crinelli, R., Scoccianti, V., Geitmann, A.: Reactive oxygen species are involved in pollen tube initiation in kiwifruit. — Plant Biol. 14: 64–76, 2012.

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai, M.: Localizing NADPH oxidase-derived ROS. — STKE 349: re8, 2006.

    Google Scholar 

  • Vidali, L., Rounds, C.M., Hepler, P.K., Bezanilla, M.: LifeactmEGFP reveals a dynamic apical F-actin network in tip growing plant cells. — PLoS One 4: e5744, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, C.L., Wu, J., Xu, G.H., Gao, Y.B., Chen, G., Wu, J.Y., Wu, H.Q., Zhang, S.L.: S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. — J. Cell Sci. 123: 4301–4308, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Chen, T., Zhang, C., Hao, H., Liu, P., Zheng, M., Baluška, F., Šamaj, J., Lin, J.: Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes. — New Phytol. 182: 851–862, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.H., Li, X.C., Zhu-Ge, Q., Jiang, X., Wang, W.D., Fang, W.P., Chen, X., Li, X.H.: Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. — PLoS One 7: e52436, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pasqualini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasqualini, S., Cresti, M., Del Casino, C. et al. Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica . Biol Plant 59, 735–744 (2015). https://doi.org/10.1007/s10535-015-0538-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0538-6

Additional key words

Navigation