Skip to main content

Reactive Oxygen Species in Growth and Development

  • Chapter
  • First Online:
Reactive Oxygen Species in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The spatial control of cell growth is a central process in plant development. Reactive oxygen species (ROS) are important regulators of cell and organ growth and are thought to operate by controlling the extensibility of the cell wall and modulating intracellular signalling processes. By increasing elasticity of the wall they promote growth, and by cross-linking polymers they increase rigidity and repress growth. ROS produced by NADPH oxidase proteins are also important regulators of tip growth in root hairs and pollen tubes, where they not only control wall rigidity but also control cell signalling events involving calcium and MAP kinases cascades. Models for the roles of ROS in the control of cell growth during development have been proposed and are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bedard, K., Lardy, B., and Krause, K.-H. (2007). NOX family NADPH oxidases: Not just in mammals. Biochimie 89, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Bethke, P.C., and Jones, R.L. (2001). Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25, 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Carol, R.J., Takeda, S., Linstead, P., Durrant, M.C., Kakesova, H., Derbyshire, P., Drea, S., Zarsky, V., and Dolan, L. (2005). A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  • Dunand, C., Crevecoeur, M., and Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist 174, 332–341.

    Article  Google Scholar 

  • Filonova, L.H., von Arnold, S., Daniel, G., and Bozhkov, P.V. (2002). Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differentiation 9, 1057–1062.

    Article  CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., and Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Fry, S.C. (1998). Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332, 507–515.

    PubMed  CAS  Google Scholar 

  • Hohl, M., Greiner, H., and Schopfer, P. (1995). The cryptic-growth response of maize coleoptiles and its relationship to H2O2-dependent cell wall stiffening. Physiologia Plantarum 94, 491–498.

    Article  CAS  Google Scholar 

  • Jones, M.A., Raymond, M.J., and Smirnoff, N. (2006). Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45, 83–100.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.A., Raymond, M.J., Yang, Z., and Smirnoff, N. (2007). NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58, 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.A., Shen, J.-J., Fu, Y., Li, H., Yang, Z., and Grierson, C.S. (2002). The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14, 763–776.

    Article  PubMed  CAS  Google Scholar 

  • Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A., and Lamb, C. (1998). A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10, 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., and Yoshioka, H. (2007). Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 1065–1080.

    Article  PubMed  CAS  Google Scholar 

  • Liszkay, A., Kenk, B., and Schopfer, P. (2003). Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217, 658–667.

    Article  PubMed  CAS  Google Scholar 

  • Liszkay, A., van der Zalm, E., and Schopfer, P. (2004). Production of reactive oxygen intermediates O2•–, H2O2, and OH• by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136, 3114–3123.

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio, J., Cruz-Ramírez, A., and Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6, 280–287.

    Article  PubMed  Google Scholar 

  • Macpherson, N., Takeda, S., Shang, Z., Dark, A., Mortimer, J., Brownlee, C., Dolan, L., and Davies, J. (2008). NADPH oxidase involvement in cellular integrity. Planta 227, 1415–1418.

    Article  PubMed  CAS  Google Scholar 

  • Miedema, H., Demidchik, V., Very, A.-A., Bothwell, J.H.F., Brownlee, C., and Davies, J.M. (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179, 378–385.

    Article  PubMed  CAS  Google Scholar 

  • Monshausen, G.B., Bibikova, T.N., Messerli, M.A., Shi, C., and Gilroy, S. (2007). Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci U S A 104, 20996–21001.

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr, A., Ritzenthaler, C., and Robinson, D.G. (2002). Brefeldin A: Deciphering an Enigmatic Inhibitor of Secretion. Plant Physiol 130, 1102–1108.

    Article  PubMed  CAS  Google Scholar 

  • Nuhse, T.S., Stensballe, A., Jensen, O.N., and Peck, S.C. (2004). Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16, 2394–2405.

    Article  PubMed  Google Scholar 

  • Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., and Kuchitsu, K. (2008). Synergistic activation of the arabidopsis NADPH oxidase AtrbohD by Ca2+ and Phosphorylation. J Biol Chem 283, 8885–8892.

    Article  PubMed  CAS  Google Scholar 

  • Potocky, M., Jones, M.A., Bezvoda, R., Smirnoff, N., and Zarsky, V. (2007). Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174, 742–751.

    Article  PubMed  CAS  Google Scholar 

  • Rentel, M.C., Lecourieux, D., Ouaked, F., Usher, S.L., Petersen, L., Okamoto, H., Knight, H., Peck, S.C., Grierson, C.S., Hirt, H., and Knight, M.R. (2004). OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, A.A., Grunberg, K.A., and Taleisnik, E.L. (2002). Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129, 1627–1632.

    Article  PubMed  CAS  Google Scholar 

  • Ros Barceló, A. (2005). Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220, 747–756.

    Article  PubMed  Google Scholar 

  • Sagi, M., Davydov, O., Orazova, S., Yesbergenova, Z., Ophir, R., Stratmann, J.W., and Fluhr, R. (2004). Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16, 616–628.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, P. (2001). Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28, 679–688.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G., and Wagner, A. (2002). Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Shin, R., Berg, R.H., and Schachtman, D.P. (2005). Reactive oxygen speices and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46, 1350–1357.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K., and Dolan, L. (2008). Local positive feedback regulation determines cell shape in root hair cells. Science 319, 1241–1244.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S.G., and Franklin-Tong, V.E. (2004). Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429, 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond-Kosack, K.E., and Jones, J.D.G. (1998). Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14, 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Very, A.-A., and Davies, J.M. (2000). Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97, 9801–9806.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Hoekstra, S., van Bergen, S., Lamers, G.E.M., Oppedijk, B.J., van der Heijden, M.W., de Priester, W., and Schilperoort, R.A. (1999). Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39, 489–501.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., and Shimamoto, K. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19, 4022–4034.

    Article  PubMed  CAS  Google Scholar 

  • Wymer, C.L., Bibikova, T.N., and Gilroy, S. (1997). Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12, 427–439.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. (2002). Small GTPases: versatile signaling switches in plants. Plant Cell 14, S375–S388.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bell, E., Takeda, S., Dolan, L. (2009). Reactive Oxygen Species in Growth and Development. In: Rio, L., Puppo, A. (eds) Reactive Oxygen Species in Plant Signaling. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00390-5_3

Download citation

Publish with us

Policies and ethics