Skip to main content
Log in

Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

To investigate whether brassinosteroids (BR) affects cytokinin (CK)-induced anthocyanin biosynthesis, seedlings of the Arabidopsis dwarf4 (dwf4) mutants including partially suppressing coi1 (psc1) and dwf4-102, which are defective in the BR biosynthesis, and the brassinosteroid-insensitive 1–4 (bri1-4) mutant defective in BR signalling were used for the analysis of CK-induced anthocyanin accumulation and the expression of anthocyanin biosynthetic genes and WD-repeat/Myb/bHLH transcription factors. The results show that the CK-induced anthocyanin accumulation was remarkably reduced in dwf4 and bri1-4 mutants, but distinctly increased in the wild type (WT) treated with BR. Moreover, the CK-induced expressions of the late anthocyanin biosynthetic genes including dihydroflavonol reductase, leucoanthocyanidin dioxygenase, and UDP-glucose: flavonoid-3-O-glucosyl transferase were significantly reduced in bri1-4 and dwf4-102 mutants compared to WT. In addition, the expressions of transcription factors production of anthocyanin pigment 1 (PAP1), glabra 3 (GL3), and enhancer of glabra 3 (EGL3) were induced by CK in WT but not in the bri1-4 and dwf4-102 mutants. These results indicate that BR enhanced the CK-induced anthocyanin biosynthesis by up-regulating the late anthocyanin biosynthetic genes and this regulation might be mediated by the transcription factors PAP1, GL3, and EGL3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BR:

brassinosteroids

CHI :

chalcone isomerase

CHS :

chalcone synthase

CK:

cytokinin

DFR :

dihydroflavonol reductase

EGL3 :

enhancer of glabra 3

GL3 :

glabra 3

JA:

jasmonate

LDOX :

leucoanthocyanidin dioxygenase

PAP1/2 :

production of anthocyanin pigment 1/2

TTG1 :

transparent testa glabra 1

UF3GT :

UDP-glucose: flavonoid-3-O-glucosyl transferase

References

  • Aza-González, C., Herrera-Isidrón, L., Núñez-Palenius, H.G., Martínez de la Vega, O., Ochoa-Alejo, N.: Anthocyanin accumulation and expression analysis of biosynthesisrelated genes during chili pepper fruit development. — Biol. Plant. 57: 49–55, 2013.

    Article  Google Scholar 

  • Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Cevahir, G., Yentur, S., Eryilmaz, F., Yilmazer, N.: Influence of brassinosteroids on pigment content of Glycine max L. (soybean) grown in dark and light. — J. appl. biol. Sci 2: 23–28, 2008.

    CAS  Google Scholar 

  • Chen, S.M., Li, C.H., Zhu, X.R., Deng, Y.M., Sun, W., Wang, L.S., Chen F.D., Zhang, Z.: The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. — Biol. Plant. 56: 458–464, 2012.

    Article  CAS  Google Scholar 

  • Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K.A.: The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. — Plant Cell 10: 231–243, 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chory, J., Nagpal, P., Peto, C.A.: Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. — Plant Cell 3: 445–459, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary, S.P., Yu, J.Q., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.P.: Benefits of brassinosteroid crosstalk. — Trends Plant Sci. 17: 594–605, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Cooney, L.J., Van Klink, J.W., Hughes, N.M., Perry, N.B., Schaefer, H.M., Menzies, I.J., Gould, K.S.: Red leaf margins indicate increased polygodial content and function as visual signals to reduce herbivory in Pseudowintera colorata. — New Phytol. 194: 488–497, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Dao, T.T.H., Linthorst, H.J.M., Verpoorte, R.: Chalcone synthase and its functions in plant resistance. — Phytochem. Rev. 10: 397–412, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das, P.K., Shin, D.H., Choi, S.B., Park, Y.I.: Sugar-hormone cross-talk in anthocyanin biosynthesis. — Mol. Cells 34: 501–507, 2012a.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das, P.K., Shin, D.H., Choi, S.B., Yoo, S.D., Choi, G., Park, Y.I.: Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. — Mol. Cells 34: 93–101, 2012b.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deikman, J., Hammer, P.E.: Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. — Plant Physiol. 108: 47–57, 1995.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farooq, M., Wahid, A., Basra, S.M.A., Islam-ud-Din.: Improving water relations and gas exchange with brassinosteroids in rice under drought stress. — J. Agron. Crop Sci. 195: 262–269, 2009.

    Article  CAS  Google Scholar 

  • Gendron, J.M., Haque, A., Gendron, N., Chang, T., Asami, T., Wang, Z.Y.: Chemical genetic dissection of brassinosteroidethylene interaction. — Mol. Plant 1: 368–379, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez, A., Zhao, M., Leavitt, J.M., Lloyd A.M.: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. — Plant J. 53: 814–827, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Gould, K.S.: Nature’s Swiss ar my knife: the diverse protective roles of anthocyanins in leaves. — J. Biomed. Biotechnol. 5: 314–320, 2004.

    Article  Google Scholar 

  • Gould, K.S., Dudle, D.A., Neufeld, H.S.: Why some stems are red: cauline anthocyanins shield photosystem II against high light stress. — J. exp. Bot. 61: 2707–2717, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grotewold, E.: The genetics and biochemistry of floral pigments. — Annu. Rev. Plant Biol. 57: 761–780, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Hu, X., Duan, R.: Interactive effects of cytokinins, light, and sucrose on the phenotypes and the syntheses of anthocyanins and lignins in cytokinin overproducing transgenic Arabidopsis. — J. Plant Growth Regul. 24: 93–101, 2005.

    Article  CAS  Google Scholar 

  • Hatier, J.H.B., Clearwater, M.J., Gould, K.S.: The Functional significance of black-pigmented leaves: photosynthesis, photoprotection and productivity in Ophiopogon planiscapus ‘Nigrescens’. — PLoS ONE 8: e67850, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatier, J.H.B., Gould, K.S.: Foliar anthocyanins as modulators of stress signals. — J. theor. Biol. 253: 625–627, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Holton, T.A., Cornish, E.C.: Genetics and biochemistry of anthocyanin biosynthesis. — Plant Cell 7: 1071–1083, 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, Y., Han, C., Peng, W., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D., Ren, C.: Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis. — Plant Signal. Behav. 5: 140–142, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins, G.I., Long, J.C., Wade, H.K., Shenton, M.R., Bibikova, T.N.: UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. — New Phytol. 151: 121–131, 2001.

    Article  CAS  Google Scholar 

  • Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K., Kim, W.J., Park, Y.I., Yoo, S.D., Choi, S.B., Choi, G., Park, Y.I.: Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. — Plant Physiol. 154: 1514–1531, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koes, R.E., Quattrocchio, F., Mol, J.N.M.: The flavonoid biosynthetic pathway in plants: function and evolution. — Bioessays 16: 123–132, 1994.

    Article  CAS  Google Scholar 

  • Krishna, P.: Brassinosteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, Y., Oh, J.E., Noh, H., Hong, S.W., Bhoo, S.H., Lee, H.: The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis. — J. Plant Res. 124: 193–200, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Laxmi, A., Paul, L.K., Peters, J.L., Khurana, J.P.: Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. — Plant mol. Biol. 56: 185–201, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., Perata, P.: Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. — New Phytol. 179: 1004–1016, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Luan, L.Y., Zhang, Z.W., Xi, Z.M., Huo, S.-S., Ma, L.N.: Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. — S. Afr. J. Enol. Viticult. 34: 196–203, 2013.

    CAS  Google Scholar 

  • Luccioni, L.G., Oliverio, K.A., Yanovsky, M.J., Boccalandro, H.E., Casal, J.J.: Brassinosteroid mutants uncover fine tuning of phytochrome signaling. — Plant Physiol. 128: 173–181, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehdy, M.C., Lamb, C.J.: Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. — EMBO J. 6: 1527–1533, 1987.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagira, Y., Ikegami, K., Koshiba, T., Ozeki, Y.: Effect of ABA upon anthocyanin synthesis in regenerated Torenia shoots. — J Plant Res. 119: 137–144, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto, D., Ikeura, A., Asami, T., Yamamoto, K.T.: Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4. — Plant Physiol. 141: 456–464, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., Tax, F.E.: Brassinosteroid insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. — Plant Physiol. 121: 743–752, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pelletier, M.K., Murrell, J.R., Shirley, B.W.: Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (further evidence for differential regulation of “early” and “late” genes). — Plant Physiol. 113: 1437–1445, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, Z., Han, C., Yuan, L., Zhang, K., Huang, H., Ren, C.: Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. — J. Integr. Plant Biol. 53: 632–640, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., Xie, D.: The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. — Plant Cell 23: 1795–1814, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren, C., Han, C., Peng, W., Huang, Y., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D.: A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. — Plant Physiol. 151: 1412–1420, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasse, J.M.: Physiological actions of brassinosteroids: an update. — J. Plant Growth Regul. 22: 276–288, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Shan, X., Zhang, Y., Peng, W., Wang, Z., Xie, D.: Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. — J. exp. Bot. 60: 3849–3860, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Shin, D.H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S.B., Choi, G., Park, Y.I.: HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis, — FEBS Lett. 587: 1543–1547, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., Perata, P.: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. — Plant Physiol. 140: 637–646, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Springob, K., Nakajima, J., Yamazaki, M., Saito, K.: Recent advances in the biosynthesis and accumulation of anthocyanins. — Natur. Prod. Rep. 20: 288–303, 2003.

    Article  CAS  Google Scholar 

  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., Thomas, M.R.: Grapes on steroids. Brassinosteroids are involved in grape berry ripening. — Plant Physiol. 140: 150–158, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G.P., Nagy, F., Schell, J., Koncz, C.: Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. — Cell 85: 171–182, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., Smeekens, S.: Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. — Plant Physiol. 139: 1840–1852, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treutter, D.: Significance of flavonoids in plant resistance and enhancement of their biosynthesis. — Plant Biol. 7: 581–591, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley, B.: Biosynthesis of flavonoids and effects of stress. — Curr. Opin. Plant Biol. 5: 218–223, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, T.: The structure, biosynthesis and function of brassinosteroids. — Trends Plant Sci. 2: 137–143, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Ren.

Additional information

Acknowledgements: This work was supported by grants from the National Science Foundation of China (30770195), the Hunan Provincial Natural Science Foundation of China (12JJ2021), the Scientific Research Fund of Hunan Provincial Education Department (12C0166), the Hunan Provincial Graduate Student’s Innovative Research (CX2013B301), and the Program for Innovative Research Team in University (IRT1239). The authors L.B. YUAN, Z.H. PENG, and T.T. ZHI contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L.B., Peng, Z.H., Zhi, T.T. et al. Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biol Plant 59, 99–105 (2015). https://doi.org/10.1007/s10535-014-0472-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0472-z

Additional key words

Navigation