Skip to main content
Log in

Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N′,N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andree KB, Kim J, Kirschke CP, Gregg JP, Paik H, Joung H, Woodhouse L, King JC, Huang L (2004) Investigation of lymphocyte gene expression for use as biomarkers for zinc status in humans. J Nutr 134:1716–1723

    CAS  PubMed  Google Scholar 

  • Besecker B, Bao S, Bohacova B, Papp A, Sadee W, Knoell D (2008) The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia. Am J Physiol Lung Cell Mol Physiol 294:L1127–L111136

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Bobo JA, Liuzzi JP, Cousins RJ (2001) Effects of intracellular zinc depletion on metallothionein and ZIP2 transporter expression and apoptosis. J Leukoc Biol 70:559–566

    CAS  PubMed  Google Scholar 

  • Cousins RJ, Blanchard RK, Popp MP, Liu L, Cao J, Moore JB, Green CL (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci U S A 100:6952–6957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    Article  CAS  PubMed  Google Scholar 

  • Croxford TP, McCormick NH, Kelleher SL (2011) Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr 141:359–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devergnas S, Chimienti F, Naud N, Pennequin A, Coquerel Y, Chantegrel J, Favier A, Seve M (2004) Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 68:699–709

    Article  CAS  PubMed  Google Scholar 

  • Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK (2003) Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 278:50142–50150

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  CAS  PubMed  Google Scholar 

  • Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaither LA, Eide DJ (2001) The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem 2001(276):22258–22264

    Article  Google Scholar 

  • Giles PJ, Cousins RJ (1982) Hormonal regulation of zinc metabolism in a human prostatic carcinoma cell line (PC-3). Cancer Res 42:2–7

    CAS  PubMed  Google Scholar 

  • Gurel V, Sens DA, Somji S, Garrett SH, Weiland T, Sens MA (2005) Post-transcriptional regulation of metallothionein isoform 1 and 2 expression in the human breast and the MCF-10A cell line. Toxicol Sci 85:906–915

    Article  CAS  PubMed  Google Scholar 

  • Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    Article  CAS  PubMed  Google Scholar 

  • Hasumi M, Suzuki K, Matsui H, Koike H, Ito K, Yamanaka H (2003) Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 200:187–195

    Article  CAS  PubMed  Google Scholar 

  • Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transport and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15:101–111

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Kirschke CP, Zhang Y (2006) Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784

    Article  PubMed  Google Scholar 

  • Kelleher SL, Lönnerdal B (2002) Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation. J Nutr 132:3280–3285

    CAS  PubMed  Google Scholar 

  • Kelleher SL, Lönnerdal B (2003) Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells. J Nutr 133:3378–3385

    CAS  PubMed  Google Scholar 

  • Killilea AN, Downing KH, Killilea DW (2007) Zinc deficiency reduces paclitaxel efficacy in LNCaP prostate cancer cells. Cancer Lett 258:70–79

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Wang F, Dufner-Beattie J, Andrews GK, Eide DJ, Petris MJ (2004) Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem 279:4523–4530

    Article  CAS  PubMed  Google Scholar 

  • King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94:679S–684S

    Article  PubMed Central  PubMed  Google Scholar 

  • Lichten LA, Ryu MS, Guo L, Embury J, Cousins RJ (2011) MTF-1-mediated repression of the zinc transporter ZIP10 is alleviated by zinc restriction. PLoS One 6:e21526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Chai J, Fu D (2009) Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 16:1063–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Mazdai G, Strain JJ, Cotter TG, Hannigan BM (1991) Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clin Exp Immunol 83:338–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michalczyk AA, Ackland ML (2013) hZip1 (hSLC39A1) regulates zinc homoeostasis in gut epithelial cells. Genes Nutr 8:475–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mouat MF, Greenspan P, Byerley LO, Grider A (2003) Zinc uptake into MCF-10A cells is inhibited by cholesterol depletion. J Nutr Biochem 14:74–80

    Article  CAS  PubMed  Google Scholar 

  • Naber TH, van den Hamer CJ, van den Broek WJ, van Tongeren JH (1992) Zinc uptake by blood cells of rats in zinc deficiency and inflammation. Biol Trace Elem Res 35:137–152

    Article  CAS  PubMed  Google Scholar 

  • Naber TH, Heymer F, Van Den Hamer CJ, Van Den Broek WJ, Jansen JB (1994a) The in vitro uptake of zinc by blood cells in rats with long-term inflammatory stress. Clin Nutr 13:247–255

    Article  CAS  PubMed  Google Scholar 

  • Naber TH, van den Hamer CJ, van den Broek WJ, Roelofs H (1994b) Zinc exchange by blood cells in nearly physiologic standard conditions. Biol Trace Elem Res 46:29–50

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer AM (1917) Experimental studies upon lymphocytes: II. The action of immune sera upon lymphocytes and small thymus cells. J Exp Med 26:163–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pattison SE, Cousins RJ (1986) Kinetics of zinc uptake and exchange by primary cultures of rat hepatocytes. Am J Physiol 250:E677–E685

    CAS  PubMed  Google Scholar 

  • Raffaniello RD, Lee SY, Teichberg S, Wapnir RA (1992) Distinct mechanisms of zinc uptake at the apical and basolateral membranes of caco-2 cells. J Cell Physiol 152:356–361

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Elias V, Wong CP, Scrimgeour AG, Ho E (2010) Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc. Biometals 23:51–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steel L, Cousins RJ (1985) Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am J Physiol 248:G46–G53

    CAS  PubMed  Google Scholar 

  • Treves S, Trentini PL, Ascanelli M, Bucci G, Di Virgilio F (1994) Apoptosis is dependent on intracellular zinc and independent of intracellular calcium in lymphocytes. Exp Cell Res 211:339–343

    Article  CAS  PubMed  Google Scholar 

  • Truong-Tran AQ, Ho LH, Chai F, Zalewski PD (2000) Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J Nutr 130:1459S–1466S

    CAS  PubMed  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  • Van Wouwe JP, Veldhuizen M, De Goeij JJ, Van den Hamer CJ (1990) In vitro exchangeable erythrocytic zinc. Biol Trace Elem Res 25:57–69

    Article  PubMed  Google Scholar 

  • Zalewski PD, Forbes IJ, Betts WH (1993) Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 296(Pt 2):403–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Adrian Moy and Ally Torres for technical assistance with this study. The authors wish to thank Sarah Burke, Mark Shigenaga, and Barbara Sutherland for helpful discussions during the preparation of the manuscript. Funding was provided by HarvestPlus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet C. King.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, T.C., Killilea, D.W., Shenvi, S.V. et al. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells. Biometals 28, 987–996 (2015). https://doi.org/10.1007/s10534-015-9883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9883-3

Keywords

Navigation