Skip to main content

Advertisement

Log in

Response of soil chemistry to forest dieback after bark beetle infestation

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We evaluated changes in the chemistry of the uppermost soil horizons in an unmanaged spruce forest (National Park Bohemian Forest, Czech Republic) for 3 years after dieback caused by a bark beetle infestation, and compared these changes with a similar undisturbed forest area. The soils below the disturbed forest received 2–6 times more elements via litter fall compared to the unaffected plot. The subsequent decomposition of litter and reduced nutrient uptake by trees resulted in a steep increase in soil concentrations of soluble N (NH4-N, organic-bound N) and P forms in the disturbed plot. The average concentrations of NH4-N and soluble reactive P increased from 0.8 to 4.4 mmol kg−1 and from 0.04 to 0.9 mmol kg−1, respectively, in the uppermost soil horizon. Decomposition of litter at the disturbed plot elevated soil concentrations of Ca2+, Mg2+ and K+, which replaced Al3+ and H+ ions from the soil sorption complex. Consequently, soil concentrations of exchangeable base cations increased from 120 to 200 meq kg−1, while exchangeable Al3+ and H+ decreased 66 and 50 %, respectively, and soil base saturation increased from 40 to 70 %. The Al3+ liberation did not elevate concentrations of ionic Al in the soil solution, because most of the liberated Al3+ was rapidly complexed by dissolved organic carbon (DOC) and transformed to DOC–Al complexes. The chemical parameters investigated at the unaffected plot remained stable during the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berg B, McClaugherty C (2008) Plant litter. Decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin

    Google Scholar 

  • Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39

    Article  Google Scholar 

  • Boudot JP, Becquer T, Merlet D, Rouiller J (1994) Aluminium toxicity in declining forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France). Ann Sci For 51:27–51

    Article  Google Scholar 

  • Breggren D, Mulder J (1995) The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons. Geochim Cosmochim Acta 59:4167–4180

    Article  Google Scholar 

  • Brunner I, Rigling D, Egli S, Blaser P (1999) Response of Norway spruce seedlings in relation to chemical properties of forest soils. For Ecol Manag 116:71–81

    Article  Google Scholar 

  • Cosby BJ, Ferrier RC, Jenkins A, Wright RF (2001) Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5(3):499–518

    Article  Google Scholar 

  • Dlouhá Š, Borůvka L, Pavlů L, Tejnecký V, Drábek O (2009) Comparison of Al speciation and other soil characteristics between meadow, young forest and old forest stands. J Inorg Biochem 103:1459–1464

    Article  Google Scholar 

  • Dougan WK, Wilson AL (1974) The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99:413–430

    Article  Google Scholar 

  • Drábek O, Borůvka L, Mládková L, Kocárek M (2003) Possible method of aluminium speciation in forest soil. J Inorg Biochem 97:8–15

    Article  Google Scholar 

  • Drábek O, Mládková L, Borůvka L, Szaková J, Nikodém A, Němeček K (2005) Comparison of water-soluble and exchangeable forms of Al in acid forest soils. J Inorg Biochem 99:1788–1795

    Article  Google Scholar 

  • Drigo B, Anderson IC, Kannagara GSK, Cairney JWG, Johnson D (2012) Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biol Biochem 49:4–10

    Article  Google Scholar 

  • Driscoll CT (1984) A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Int J Environ Anal Chem 16:267–284

    Article  Google Scholar 

  • Gensemer RW, Playle RC (1999) The bioavailability and toxicity of aluminium in aquatic environments. Crit Rev Environ Sci Technol 29:315–450

    Article  Google Scholar 

  • Gessler A, Schneider S, von Sengsbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    Article  Google Scholar 

  • Griffin JM, Turner MG, Simard M (2011) Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. For Ecol Manag 261:1077–1089

    Article  Google Scholar 

  • Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504

    Article  Google Scholar 

  • Huber C (2005) Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest national park. J Environ Qual 34:1772–1779

    Article  Google Scholar 

  • Huber C, Baumgarten M, Göttlein A, Rotter V (2004) Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian forest national park. Water Air Soil Pollut Focus 4:391–414

    Article  Google Scholar 

  • Jonášová M, Prach K (2004) Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng 23:15–27

    Article  Google Scholar 

  • Kaňa J, Kopáček J (2006) Impact of soil sorption characteristics and bedrock composition on phosphorus concentrations in two Bohemian Forest lakes. Water Air Soil Pollut 173:243–259

    Article  Google Scholar 

  • Karlberg B, Twengström S (1983) Applications based on gas diffusion and flow injection analysis. Focus 6:14–15

    Google Scholar 

  • Kopáček J, Hejzlar J (1993) Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183

    Article  Google Scholar 

  • Kopáček J, Borovec J, Hejzlar J, Porcal P (2001) Spectrophotometric determinations of iron, aluminum, and phosphorus in soil and sediment extracts after their nitric and perchloric acid digestion. Commun Soil Sci Plant Anal 32:1431–1443

    Article  Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Veselý J (2002a) Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: I. Plešné Lake. Silva Gabreta 8:43–46

    Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Veselý J (2002b) Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: II. Čertovo and Černé Lakes. Silva Gabreta 8:67–94

    Google Scholar 

  • Kopáček J, Turek J, Hejzlar J, Kaňa J, Porcal P (2006) Element fluxes in catchment-lake ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001–2005. Biologia, Bratislava 61(Suppl. 20):S413–S426

    Article  Google Scholar 

  • Kopáček J, Hejzlar J, Kaňa J, Norton SA, Porcal P, Turek J (2009) Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. J Inorg Biochem 103:1439–1438

    Google Scholar 

  • Kopáček J, Cudlín P, Svoboda M, Chmelíková E, Kaňa J, Picek T (2010) Composition of Norway spruce litter and foliage in atmospherically acidified and nitrogen-saturated Bohemian Forest stands, Czech Republic. Boreal Environ Res 15:413–426

    Google Scholar 

  • Kopáček J, Turek J, Hejzlar J, Porcal P (2011) Bulk deposition and throughfall fluxes of elements in the Bohemian Forest (Central Europe) from 1998 to 2009. Boreal Environ Res 16:495–508

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  Google Scholar 

  • Majer V, Cosby BJ, Kopáček J, Veselý J (2003) Modelling reversibility of Central European mountain lakes from acidification: part I—the Bohemian Forest. Hydrol Earth Syst Sci 7(4):494–509

    Article  Google Scholar 

  • McHale MR, Burns DA, Lawrence DB, Murdoch PS (2007) Factors controlling soil water and stream water aluminum concentrations after a clearcut in a forested catchment with calcium-poor soils. Biogeochemistry 84:311–331

    Article  Google Scholar 

  • Morehouse K, Johns T, Kaye J, Kaye A (2008) Carbon and nitrogen cycling immediately following bark beetle outbreaks in south western ponderosa pine forests. For Ecol Manag 255:2698–2708

    Article  Google Scholar 

  • Olsson BA, Bengtsson J, Lundkvist H (1996) Effects of different forest harvest intensities on the pools of exchangeable cations in coniferous forest soils. For Ecol Manag 84:135–147

    Article  Google Scholar 

  • Palviainen M, Finér L, Kurka A-M, Mannerkoski H, Piirainen S, Starr M (2004) Release of potassium, calcium, iron and aluminium from Norway spruce, Scots pine and silver birch logging residues. Plant Soil 259:123–136

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford, p 173

    Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368

    Article  Google Scholar 

  • Prescott CE, Maynard DG, Laiho R (2000) Humus in northern forests: friend or foe? For Ecol Manag 133:23–36

    Article  Google Scholar 

  • Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soils and waters. Springer, New York

    Book  Google Scholar 

  • Rosén K, Aronson J-A, Eriksson HM (1996) Effects of clear-cutting on streamwater quality in forest catchments in central Sweden. For Ecol Manag 83:237–244

    Article  Google Scholar 

  • Šantrůčková H, Krištůfková M, Vaněk D (2006) Decomposition rate and nutrient release from plant litter of Norway spruce forest in the Bohemian Forest. Biologia, Bratislava 61(Suppl. 20):S499–S508

    Google Scholar 

  • Šantrůčková H, Šantrůček J, Šetlík J, Svoboda M, Kopáček J (2007) Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. Environ Sci Technol 41:5778–5782

    Article  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633

    Article  Google Scholar 

  • Shaw A, Karlsson CH, Moller J (1988) An introduction to the use of flow injection analysis. Tecator, Sweden

    Google Scholar 

  • Svoboda M, Matějka K, Kopáček J (2006a) Biomass and element pools of understory vegetation in the catchments of the Čertovo Lake and Plešne Lake in the Bohemian Forest. Biologia, Bratislava 61(Suppl. 20):S509–S521

    Article  Google Scholar 

  • Svoboda M, Matějka K, Kopáček J, Žaloudík J (2006b) Estimation of tree biomass of Norway spruce forest in the Plešné Lake catchment, the Bohemian Forest. Biologia, Bratislava 61(Suppl. 20):S523–S532

    Article  Google Scholar 

  • Svoboda M, Janda P, Nagel TA, Fraver S, Rejzek J, Bace R (2012) Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. J Veg Sci 23:86–97. doi:10.1111/j.1654-1103.2011.01329.x

    Article  Google Scholar 

  • Tahovská K, Kopáček J, Šantrůčková H (2010) Nitrogen availability in Norway spruce forest floor—the effect of forest defoliation induced by bark beetle infestation. Boreal Environ Res 15:553–564

    Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL et al (eds) Methods of soil analysis, part 2, 2nd edn. ASA and SSSA, Madison, pp 159–166

    Google Scholar 

  • Veselý J, Almquist-Jacobson H, Miller LM, Norton SA, Appleby P, Dixit AS, Smol JP (1993) The history and impact of air pollution at Čertovo Lake, southwestern Czech Republic. J Paleolimnol 8:211–231

    Article  Google Scholar 

  • Vrba J, Kopáček J, Fott J, Kohout L, Nedbalová L, Pražáková M, Soldán T, Schaumburg J (2003) Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Sci Total Environ 310:73–85

    Article  Google Scholar 

  • Zang U, Lamersdorf N, Borken W (2011) Response of the fine root system in a Norway spruce stand to 13 years of reduced atmospheric nitrogen and acidity input. Plant Soil 339:435–445

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant Agency of ASCR (KJB600960907) and partly by project No. GAJU 143/2010/P. We thank Daniel Vaněk, Tomáš Picek, Vladimíra Hejzlarová and Karel Murtinger for laboratory and field assistance, František Havlíček for litter sampling, and David Hardekopf for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kaňa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaňa, J., Tahovská, K. & Kopáček, J. Response of soil chemistry to forest dieback after bark beetle infestation. Biogeochemistry 113, 369–383 (2013). https://doi.org/10.1007/s10533-012-9765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9765-5

Keywords

Navigation