Skip to main content
Log in

Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A genetically engineered microorganism (GEM) capable of simultaneously degrading organophosphate and organochlorine pesticides was constructed for the first time by display of organophosphorus hydrolase (OPH) on the cell surface of a hexachlorocyclohexane (HCH)-degrading Sphingobium japonicum UT26. The GEM could potentially be used for removing the two classes of pesticides that may be present in mixtures at contaminated sites. A surface anchor system derived from the truncated ice nucleation protein (INPNC) from Pseudomonas syringae was used to target OPH onto the cell surface of UT26, reducing the potential substrate uptake limitation. The surface localization of INPNC–OPH fusion was verified by cell fractionation, western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH was demonstrated by OPH activity assays. Surface display of INPNC–OPH fusion (82 kDa) neither inhibited cell growth nor affected cell viability. The engineered UT26 could degrade parathion as well as γ-HCH rapidly in minimal salt medium. The removal of parathion and γ-HCH by engineered UT26 in sterile and non-sterile soil was also studied. In both soil samples, a mixture of parathion (100 mg kg−1) and γ-HCH (10 mg kg−1) could be degraded completely within 15 days. Soil treatment results indicated that the engineered UT26 is a promising multifunctional bacterium that could be used for the bioremediation of multiple pesticide-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bidlan R, Afsar M, Manonmami HK (2004) Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination. Chemosphere 56:803–811

    Article  PubMed  CAS  Google Scholar 

  • Ceremonie H, Boubakri H, Mavingui P, Simonet P, Vogel TM (2006) Plasmid-encoded gamma-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp +). FEMS Microbiol Lett 257:243–252

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Bruhlmann F, Richins RD, Mulchandani A (1999) Engineering of improved microbes and enzymes for bioremediation. Curr Opin Biotechnol 10:137–141

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Eltis L, Kessler B, Timmis KN (1993) Analysis of Pseudomonas gene products using lacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123:17–24

    Article  PubMed  Google Scholar 

  • Grag B, Dogra RC, Sharma PK (1999) High-efficiency transformation of Rhizobium leguminosarum by electroporation. Appl Environ Microbiol 65:2802–2804

    Google Scholar 

  • Imai R, Nagata Y, Senoo K, Wada H, Fukuda M, Takagi M, Yano K (1989) Dehydrochlorination of γ-Hexachlorocyclohexane (γ-BHC) by γ-BHC-assimilating Pseudomonas paucimobilis. Agric Biol Chem 53:2015–2017

    Article  CAS  Google Scholar 

  • Jung HC, Lebeault JM, Pan JG (1998) Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol 16:576–580

    Article  PubMed  CAS  Google Scholar 

  • Kozloff LM, Turner MA, Arellano F (1991) Formation of bacterial membrane ice-nucleation lipoglycoprotein complexes. J Bacteriol 173:6528–6536

    PubMed  CAS  Google Scholar 

  • Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Dogra C, Malhotra S, Sharma P, Pal R (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 24:121–130

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  PubMed  CAS  Google Scholar 

  • Lei Y, Mulchandani A, Chen W (2005) Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. Biotechnol Prog 21:678–681

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Scholtz MT, Van Heyst BJ (2003) Global gridded emission inventories of beta-hexachlorocyclohexane. Environ Sci Technol 37:3493–3498

    Article  PubMed  CAS  Google Scholar 

  • Li L, Kang DG, Cha HJ (2004) Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol Bioeng 85:214–221

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yang C, Jiang H, Mulchandani A, Chen W, Qiao CL (2009) Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. J Agric Food Chem 57:6171–6177

    Article  PubMed  CAS  Google Scholar 

  • Mulbry WW, Hams JF, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    PubMed  CAS  Google Scholar 

  • Nagata Y, Hatta T, Imai R, Kimbara K, Fukuda M, Yano K, Takagi M (1993) Purification and characterization of γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis. Biosci Biotechnol Biochem 57:1582–1583

    Article  CAS  Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752

    Article  PubMed  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  PubMed  CAS  Google Scholar 

  • Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  PubMed  CAS  Google Scholar 

  • Rodrigue A, Chanal A, Beck K, Muller M, Wu L (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J Biol Chem 274:13223–13228

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Pridmore D, Capitani G, Battistuta R, Nesser JR, Jann A (1997) Molecular organization of the ice nucleation protein InaV from Pseudomonas syringae. FEBS Lett 414:590–594

    Article  PubMed  CAS  Google Scholar 

  • Senoo K, Wada H (1989) Isolation and identification of an aerobic γ-HCH decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87

    Article  CAS  Google Scholar 

  • Serdar CM, Gibson DT (1985) Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Bio/Technology 3:567–571

    Article  CAS  Google Scholar 

  • Shi H, Su WW (2001) Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb Technol 28:25–34

    Article  PubMed  CAS  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318–324

    Article  PubMed  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  PubMed  CAS  Google Scholar 

  • Sogorb MA, Vilanova E, Carrera V (2004) Future application of phosphotriesterases in the prophylaxis and treatment of organophosphorus insecticide and nerve agent poisoning. Toxicol Lett 151:219–233

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Suye S, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A (2006) Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939–943

    Article  PubMed  CAS  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  • Wolber PK (1993) Bacterial ice nucleation. Adv Microb Physiol 34:203–237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yuji Nagata of Tohoku University, Japan, for providing Sphingobium japonicum UT26. This work was supported by grants from Agriculture Research Program of Science and Technology Department of Liaoning Province, China (Nos. 2011211001 and 2009209001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Yang, C., Liu, R. et al. Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation 24, 295–303 (2013). https://doi.org/10.1007/s10532-012-9587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9587-0

Keywords

Navigation