Skip to main content

Advertisement

Log in

The effect of habitat fragmentation and abiotic factors on fen plant occurrence

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Human landscape modification has led to habitat fragmentation for many species. Habitat fragmentation, leading to isolation, decrease in patch size and increased edge effect, is observed in fen ecosystems that comprise many endangered plant species. However, until now it has remained unclear whether habitat fragmentation per se has a significant additional negative effect on plant species persistence, besides habitat loss and degradation. We investigated the relative effect of isolation, habitat size, and habitat edge compared to the effect of habitat degradation by including both ‘fragmentation variables’ and abiotic variables in best subsets logistic regression analyses for six fen-plant species. For all but one species, besides abiotic variables one or more variables related to fragmentation were included in the regression model. For Carex lasiocarpa, isolation was the most important factor limiting species distribution, while for Juncus subnodulosus and Menyanthes trifoliata, isolation was the second most important factor. The effect of habitat size differed among species and an increasing edge had a negative effect on the occurrence of Carex lasiocarpa and Pedicularis palustris. Our results clearly show that even if abiotic conditions are suitable for certain species, isolation of habitat patches and an increased habitat edge caused by habitat fragmentation affect negatively the viability of characteristic fen plant species. Therefore, it is important not only to improve habitat quality but also to consider spatial characteristics of the habitat of target species when deciding on plant conservation strategies in intensively used landscapes, such as fen areas in Western Europe and North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bini LM, Diniz-Filho JAF, Rangel TFLVB, Akre TSB, Albaladejo RG, Albuquerque FS, Aparicio A, Araújo MB, Baselga A, Beck J, Bellocq MI, Böhning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, De Marco P Jr, Dobkin DS, Ferrer-Castán D, Field R, Filloy J, Fleishman E, Gómez JF, Hortal J, Iverson JB, Kerr JT, Kissling WD, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdorff T, Olalla-Tárraga MA, Pausas JG, Qian H, Rahbek C, Rodríguez MA, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204

    Article  Google Scholar 

  • Bouman F, Boesewinkel D, Bregman R, Devente N, Oostermeijer G (2000) Verspreiding van. zaden. KNNV Uitgeverij, Utrecht

  • Catellier DJ, Hannan PJ, Murray DM, Addy CL, Conway TL, Yang S, Rice JC (2005) Imputation of missing data when measuring physical activity by accelerometry. Med Sci Sports Exerc 37:S555–S562

    Article  PubMed  Google Scholar 

  • Collins CD, Holt RD, Foster BL (2009) Patch size effects on plant species decline in an experimentally fragmented landscape. Ecology 90:2577–2588

    Article  PubMed  Google Scholar 

  • De Mars H (1996) Chemical and physical dynamics of fen hydro-ecology, p. 167. Rijksuniversiteit Utrecht, Utrecht

  • De Veaux RD, Ungar LH (1994) Multicollinearity: a tale of two nonparametric regressions. In: Cheeseman P, Oldford RW (eds) Selecting models from data: AI and statistics IV. Springer, New York, pp 293–302

  • Diniz-Filho JA, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Google Scholar 

  • Ehrlen J, Münzbergová Z, Diekmann M, Eriksson O (2006) Long-term assessment of seed limitation in plants: results from an 11-year experiment. J Ecol 94:1224–1232

    Article  Google Scholar 

  • ESRI (2006) ArcGIS 9.1. Environmental Systems Research Institute, California

  • Ewers RM, Didham RK (2005) Confounding factors in the detection of species responses to 21 habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:96–106

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Mauricio Bini L, De Marco P, Blackburn TM (2007) Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30:375–384

    Google Scholar 

  • Helm A, Hanski I, Partel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598

    Article  Google Scholar 

  • King JE (2003) Running a best-subsets logistic regression: an alternative to stepwise ethods. Edu Psychol Meas 63:392–403

    Article  Google Scholar 

  • Kleyer MR, Bekker M, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of the northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in The Netherlands. Hydrobiologia 478:107–130

    Article  Google Scholar 

  • Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55:77–92

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam 22

    Google Scholar 

  • Lehmann H, Neidhart HV, Schlenkermann G (1984) Ultrastructural investigations on sporogenesis in Equisetum fluviatile. Protoplasma 123:38–47

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2007) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Ozinga WA, Schaminee JHJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendael JM (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561

    Article  Google Scholar 

  • Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74

    Article  PubMed  Google Scholar 

  • Provincie Utrecht (2003) Handleiding 2003, Ecologisch Onderzoek, onderdeel Flora en Vegetatie. Sector Ecologisch onderzoek en Groene regelgeving, Utrecht

  • Pueyo Y, Alados CL (2007) Effects of fragmentation, abiotic factors and land use on vegetation recovery in a semi-arid Mediterranean area. Basic Appl Ecol 8:158–170

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15(4):321–327

    Google Scholar 

  • Runhaar J, vanGool CR, Groen CLG (1996) Impact of hydrological changes on nature conservation areas in The Netherlands. Biol Conserv 76:269–276

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation—a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schaminée JHJ, Weeda EJ, Westhoff V (1995) De Vegetatie van Nederland. Deel 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus Press, Uppsala/Leiden

  • Schmidt K, Jensen K (2000) Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am J Bot 87(678–689):23

    Google Scholar 

  • Schot PP, Wassen MJ (1993) Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. J Hydrol 141:197–217

    Article  CAS  Google Scholar 

  • Schot PP, Barendregt A, Wassen MJ (1988) Hydrology of the wetland Naardermeer: influence of the surrounding area and impact on vegetation. Agric Water Manag 14(1–4):459–470

    Article  Google Scholar 

  • Sjors H, Gunnarsson U (2002) Calcium and pH in North and Central Swedish mire waters. J Ecol 90:650–657

    Article  CAS  Google Scholar 

  • Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285

    Article  Google Scholar 

  • Soomers H, Winkel DN, Du Y, Wassen MJ (2010) The dispersal and deposition of hydrochorous plant seeds in drainage ditches. Freshw Biol 55:2032–2046

    Article  Google Scholar 

  • Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Appl Veg Sci 9:271–278

    Article  Google Scholar 

  • Soons MB, Heil GW (2002) Reduced colonization capacity in fragmented populations of wind- dispersed grassland forbs. J Ecol 90:1033–1043

    Article  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destuction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Topografische Dienst (2005) Topografische ondergrond (c), Emmen

  • Van den Broek T, van Diggelen R, Bobbink R (2005) Variation in seed buoyancy of species in wetland ecosystems with different flooding dynamics. J Veg Sci 16:579–586

    Google Scholar 

  • Van der Meijden R (1996) Heukels’ Flora van Nederland Wolters-Noordhoff bv. Groningen

  • Van Diggelen R, Molenaar WJ, Kooijman AM (1996) Vegetation succession in a floating mire in relation to management and hydrology. J Veg Sci 7:809–820.

    Google Scholar 

  • Van der Meijden R, van Duuren L, Weeda EJ, Plate CL (1991) Standaardlijst van de Nederlandse Flora 1990. Gorteria 17:75–127

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wassen MJ, Barendregt A (1992) Topographic position and water chemistry of fens in a dutch river plain. J Veg Sci 3:447–456

    Article  Google Scholar 

  • Wassen MJ, Barendregt A, Bootsma MC, Schot PP (1989) Groundwater chemistry and vegetation of gradients from rich fen to poor fen in the Naardermeer (The Netherlands). Vegetatio 79:117–132

    Article  Google Scholar 

  • Wassen MJ, Barendregt A, Schot PP, Beltman B (1990a) Dependency of local mesotrophic fens on a regional groundwater flow system in a poldered river plain in The Netherlands. Landscape Ecol 5:21–38

    Article  Google Scholar 

  • Wassen MJ, Barendregt A, Palczynski A, De Smidt JT, De Mars H (1990b) The relationship between fen vegetation gradients, groundwater flow and flooding in an undrained valley mire at Biebrza, Poland. J Ecol 78:1106–1122

    Article  Google Scholar 

  • Wassen MJ, Barendregt A, Palczynski A, De Smidt JT, De Mars H (1992) Hydro-ecological analysis of the Biebrza mire (Poland). Wetlands Ecol Manage 2(3):119–134

    Article  Google Scholar 

  • Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Wassen MJ, Okruszko T, Kardel I, Chormanski J, Swiatek D, Mioduszewski W, Bleuten W, Querner EP, El Kahloun M, Batelaan O, Meire P (2006) Eco-hydrological functioning of the Biebrza Wetlands; lessons for the conservation and restoration of deteriorated wetlands. In: Bobbink R, Beltman B, Verhoeven JTA, Whigham D (eds) Wetlands functioning, biodiversity conservation and restoration. Springer, Heidelberg, pp 285–310

  • Whittaker RJ, Nogués-Bravo D, Araújo MB (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob Ecol Biogeogr 16:76–89

    Article  Google Scholar 

  • Zonneveld JIS (1980) Tussen de bergen en de zee, 5th edn. Bohn, Scheltema and Holkema

    Google Scholar 

Download references

Acknowledgments

The authors thank the Province of Utrecht, the Province of Noord-Holland, and Vereniging Natuurmonumenten for providing data and Hans de Mars for collecting data; Maarten Zeylmans van Emmichoven for his advice on GIS procedures and Rogier Donders for his advice on statistics. Hester Soomers’ contribution was funded by the Utrecht Centre of Geosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Wassen.

Appendix

Appendix

See Table 7.

Table 7 The means and standard deviations for each variable

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soomers, H., Karssenberg, D., Verhoeven, J.T.A. et al. The effect of habitat fragmentation and abiotic factors on fen plant occurrence. Biodivers Conserv 22, 405–424 (2013). https://doi.org/10.1007/s10531-012-0420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0420-1

Keywords

Navigation