Skip to main content

Advertisement

Log in

Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A framework for identifying species that may become invasive under future climate conditions is presented, based on invader attributes and biogeography in combination with projections of future climate. We illustrate the framework using the CLIMEX niche model to identify future climate suitability for three species of Hawkweed that are currently present in the Australian Alps region and related species that are present in the neighbouring region. Potential source regions under future climate conditions are identified, and species from those emerging risk areas are identified. We use dynamically downscaled climate projections to complement global analyses and provide fine-scale projections of suitable climate for current and future (2070–2099) conditions at the regional scale. Changing climatic conditions may reduce the suitability for some invasive species and improve it for others. Invasive species with distributions strongly determined by climate, where the projected future climate is highly suitable, are those with the greatest potential to be future invasive species in the region. As the Alps region becomes warmer and drier, many more regions of the world become potential sources of invasive species, although only one additional species of Hawkweed is identified as an emerging risk. However, in the longer term, as the species in these areas respond to global climate change, the potential source areas contract again to match higher altitude regions. Knowledge of future climate suitability, based on species-specific climatic tolerances, is a useful step towards prioritising management responses such as targeted eradication and early intervention to prevent the spread of future invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auld B et al (2012) Further development of the National weed risk management protocol. Developing solutions to evolving weed problems. Paper presented at the 18th Australasian Weeds Conference, Melbourne, Victoria, Australia, 8–11, October 2012

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423. doi:10.1111/j.1365-2664.2006.01136.x

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269. doi:10.1016/j.ecolmodel.2005.01.030

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420. doi:10.1111/j.1472-4642.2008.00547.x

    Article  Google Scholar 

  • Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748. doi:10.1111/gcb.12344

    Article  Google Scholar 

  • Bradley B, Wilcove D, Oppenheimer M (2010a) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12:1855–1872. doi:10.1007/s10530-009-9597-y

    Article  Google Scholar 

  • Braganza K et al. (2015) Understanding recent australian climate. Chapter 4, climate change in Australia. Information for Australia’s natural resource management regions: technical report. CSIRO and Bureau of Meteorology, Australia. http://www.climatechangeinaustralia.gov.au/en/publications-library/technical-report/

  • Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007) Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J Theor Biol 245:59–65. doi:10.1016/j.jtbi.2006.09.033

    Article  PubMed  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157. doi:10.1111/j.1365-2486.2009.02000.x

    Article  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. doi:10.1111/j.1472-4642.2008.00521.x

    Article  Google Scholar 

  • Chamberlin TC (1965) The method of multiple working hypotheses. Science 148:754–759

    Article  CAS  PubMed  Google Scholar 

  • Corney S et al (2013) Performance of downscaled regional climate simulations using a variable-resolution regional climate model: tasmania as a test case. J Geophys Res Atmos 118:11936–11950. doi:10.1002/2013jd020087

    Article  Google Scholar 

  • Crossman ND, Bryan BA, Cooke DA (2011) An invasive plant and climate change threat index for weed risk management: integrating habitat distribution pattern and dispersal process. Ecol Ind 11:183–198. doi:10.1016/j.ecolind.2008.10.011

    Article  Google Scholar 

  • Crosti R, Cascone C, Cipollaro S (2010) Use of a weed risk assessment for the Mediterranean region of Central Italy to prevent loss of functionality and biodiversity in agro-ecosystems. Biol Invasions 12:1607–1616. doi:10.1007/s10530-009-9573-6

    Article  Google Scholar 

  • CSIRO and Bureau of Meteorology. 2015. Climate change in Australia. information for Australia’s natural resource management regions: technical report. CSIRO and Bureau of Meteorology, Australia

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035. doi:10.1111/j.1365-2486.2010.02263.x

    Article  Google Scholar 

  • Dowdy AJ, Grose MR, Timbal B, Moise A, Ekström M, Bhend J, Wilson LM (2015) Rainfall in Australia’s eastern seaboard: a review of confidence in projections based on observations and physical processes. Aust Meteorol Oceanogr J 65:107–126

    Google Scholar 

  • Dunlop M, Parris H, Ryan P, Kroon F (2013) Climate-ready conservation objectives: a scoping study. National Climate Change Adaptation Research Facility, Gold Coast

    Google Scholar 

  • Eyre D et al (2012) Rating and mapping the suitability of the climate for pest risk analysis*. EPPO Bull 42:48–55. doi:10.1111/j.1365-2338.2012.02549.x

    Article  Google Scholar 

  • Gallagher RV, Duursma DE, O’Donnell J, Wilson PD, Downey PO, Hughes L, Leishman MR (2013) The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975. doi:10.1007/s10530-012-0342-6

    Article  Google Scholar 

  • Gallien L, Munkemuller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342. doi:10.1111/j.1472-4642.2010.00652.x

    Article  Google Scholar 

  • Gaskin JF, Wilson LM (2007) Phylogenetic relationships among native and naturalized Hieracium (Asteraceae) in Canada and the United States based on plastid DNA sequences. Syst Bot 32:478–485. doi:10.1600/036364407781179752

    Article  Google Scholar 

  • Gould SF, Beeton NJ, Harris RMB, Hutchinson MF, Lechner AM, Porfirio LL, Mackey BG (2014) A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecol Evol 4:4798–4811. doi:10.1002/ece3.1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Gritti ES, Smith B, Sykes MT (2006) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157. doi:10.1111/j.1365-2699.2005.01377.x

    Article  Google Scholar 

  • Guo Q (2006) Intercontinental biotic invasions: what can we learn from native populations and habitats? Biol Invasions 8:1451–1459. doi:10.1007/s10530-005-5834-1

    Article  Google Scholar 

  • Harris RM, Porfirio LL, Hugh S, Lee G, Bindoff NL, Mackey B, Beeton NJ (2013) To be or not to be? Variable selection can change the projected fate of a threatened species under future climate. Ecol Manag Restor 14:230–234. doi:10.1111/emr.12055

    Article  Google Scholar 

  • Harris RM, Grose M, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P (2014) Climate projections for ecologists WIREs. Clim Change. doi:10.1002/wcc.1291

    Google Scholar 

  • Harris RMB, Carter O, Gilfedder L, Porfirio LL, Lee G, Bindoff N (2015) Noah’s Ark conservation will not preserve threatened ecological communities under climate change. PLoS ONE 10(4):e0124014. doi:10.1371/journal.pone.0124014

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543. doi:10.1111/j.1523-1739.2008.00951.x

    Article  PubMed  Google Scholar 

  • Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2011) WORLDCLIM—a set of global climate layers (climate grids). http://www.worldclim.org/doi:citeulike-article-id:2637049

  • Hoffmann BD, Courchamp F (2016) Biological invasions and natural colonisations: are they that different? NeoBiota 29:1–14

    Article  Google Scholar 

  • Hughes L (2011) Climate change and Australia: key vulnerable regions. Reg Environ Change 11:S189–S195. doi:10.1007/s10113-010-0158-9

    Article  Google Scholar 

  • Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193. doi:10.1017/s003060530300036x

    Article  Google Scholar 

  • International Organization for Plant Information (2015). Details for Hieracium. Provisional Global Plant Checklist

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Irving DB, Whetton P, Moise AF (2012) Climate projections for Australia: a first glance at CMIP5. Aust Meteorol Oceanogr J 62:211–225

    Google Scholar 

  • Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections Nature. Clim Change 3:369–373. doi:10.1038/nclimate1716

    Article  Google Scholar 

  • Koop AL, Fowler L, Newton LP, Caton BP (2012) Development and validation of a weed screening tool for the United States. Biol Invasions 14:273–294. doi:10.1007/s10530-011-0061-4

    Article  Google Scholar 

  • Kriticos DJ (2012) Regional climate-matching to estimate current and future sources of biosecurity threats. Biol Invasions 14:1533–1544. doi:10.1007/s10530-011-0033-8

    Article  Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp indica in Australia. J Appl Ecol 40:111–124. doi:10.1046/j.1365-2664.2003.00777.x

    Article  Google Scholar 

  • Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53–64. doi:10.1111/j.2041-210X.2011.00134.x

    Article  Google Scholar 

  • Kriticos DJ et al (2015a) Downscaling pest risk analyses: identifying current and future potentially suitable habitats for Parthenium hysterophorus with particular reference to Europe and North Africa. PLoS ONE. doi:10.1371/journal.pone.0132807

    Google Scholar 

  • Kriticos DJ, Maywald GF, Yonow T, Zurcher EJ, Herrmann NI, Sutherst RW (2015b) CLIMEX Version 4: exploring the effects of climate on plants, animals and diseases. CSIRO, Canberra

    Google Scholar 

  • Kuhn I, Durka W, Klotz S (2004) BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers Distrib 10:363–365. doi:10.1111/j.1366-9516.2004.00106.x

    Article  Google Scholar 

  • Lee T, Waliser DE, Li JLF, Landerer FW, Gierach MM (2013) Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J Clim 26:5810–5826. doi:10.1175/jcli-d-12-00591.1

    Article  Google Scholar 

  • Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]

    Article  Google Scholar 

  • Makepeace W (1985) Some establishment characteristics of Mouse-ear and King Devil Hawkweeds. NZ J Bot 23:91–100

    Article  Google Scholar 

  • McGregor KF, Watt MS, Hulme PE, Duncan RP (2012) How robust is the Australian Weed Risk Assessment protocol? A test using pine invasions in the Northern and Southern hemispheres. Biol Invasions 14:987–998. doi:10.1007/s10530-011-0133-5

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Morgan-Richards M, Trewick SA, Chapman HM, Krahulcova A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42. doi:10.1038/sj.hdy.6800476

    Article  CAS  PubMed  Google Scholar 

  • Nagel JM, Huxman TE, Griffin KL, Smith SD (2004) CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology 85(1):100–106

    Article  Google Scholar 

  • Natural Heritage Trust (2003) Weed management guide: orange hawkweed (hieracium aurantiacum). Alert list for environmental weeds, CRC for Australian Weed Management

    Google Scholar 

  • Nishida T, Yamashita N, Asai M, Kurokawa S, Enomoto T, Pheloung P, Groves R (2009) Developing a pre-entry weed risk assessment system for use in Japan. Biol Invasions 11:1319–1333. doi:10.1007/s10530-008-9340-0

    Article  Google Scholar 

  • Nunez MA, Medley KA (2011) Pine invasions: climate predicts invasion success; something else predicts failure. Divers Distrib 17:703–713. doi:10.1111/j.1472-4642.2011.00772.x

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change annual review of ecology. Evol Systematics 37:637–669

    Article  Google Scholar 

  • Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116:849–864. doi:10.1093/aob/mcv169

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson RG et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. doi:10.1111/j.1365-2699.2006.01460.x

    Article  Google Scholar 

  • Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251. doi:10.1006/jema.1999.0297

    Article  Google Scholar 

  • Risbey JS, O’Kane TJ (2011) Sources of knowledge and ignorance in climate research. Clim Change 108:755–773

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates Nature. Clim Change 2:248–253. doi:10.1038/nclimate1385

    Article  Google Scholar 

  • Roger E et al (2015) A tool to assess potential for alien plant establishment and expansion under climate change. J Environ Manag 159:121–127. doi:10.1016/j.jenvman.2015.05.039

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    Article  CAS  PubMed  Google Scholar 

  • Roy HE et al (2014) Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob Chang Biol 20:3859–3871. doi:10.1111/gcb.12603

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainty G, Hosking J, Jacobs S (2007) Alps invaders: weeds of the high country. Tabletop Press, Canberra, Australia

    Google Scholar 

  • Shelford VE (1963) The ecology of North America. University of Illinois Press, Urbana

    Google Scholar 

  • Strother JL (2006) Hieracium. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico vol. 19–21. Oxford University Press, New York, pp 278–294

  • Sutherst RW (2014) Pest species distribution modelling: origins and lessons from history. Biol Invasions 16:239–256. doi:10.1007/s10530-013-0523-y

    Article  Google Scholar 

  • Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237

    Article  Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology Agriculture. Ecost Environ 13:281–299. doi:10.1016/0167-8809(85)90016-7

    Article  Google Scholar 

  • Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob Ecol Biogeogr 20:904–914. doi:10.1111/j.1466-8238.2010.00635.x

    Article  Google Scholar 

  • Taylor S, Kumar L, Reid N, Kriticos DJ (2012) Climate change and the potential distribution of an invasive shrub, Lantana camara L. Plos One. doi:10.1371/journal.pone.0035565

    Google Scholar 

  • Thuiller W, Richardson D, Midgley G (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions, vol 193. Ecological studies. Springer, Heidelberg, pp 197–211. doi:10.1007/978-3-540-36920-2_12

  • Tyler T (2014) Critical notes on species of Hieracium (Asteraceae) reported as common to Sweden and Britain New. J Bot 4:25–32

    Google Scholar 

  • van der Ploeg RR, Bohm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci Soc Am J 63:1055–1062

    Article  Google Scholar 

  • Venette RC et al (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60:349–362. doi:10.1525/bio.2010.60.5.5

    Article  Google Scholar 

  • Walther GR et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi:10.1016/j.tree.2009.06.008

    Article  PubMed  Google Scholar 

  • Webber BL et al (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000. doi:10.1111/j.1472-4642.2011.00811.x

    Article  Google Scholar 

  • Williams NSG, Holland KD (2007) The ecology and invasion history of hawkweeds (Hieracium species) in Australia. Plant Prot Q 22:76–80

    Google Scholar 

  • Williams PA, Nicol E, Newfield M (2000) Assessing the risk to indigenous biota from new exotic plant taxa and genetic material, vol 143. Department of Conservation, New Zealand, Wellington

    Google Scholar 

  • Yemshanov D, Koch FH, Ducey MJ, Haack RA, Siltanen M, Wilson K (2013) Quantifying uncertainty in pest risk maps and assessments: Adopting a risk-averse decision maker’s perspective. Neobiota 18:193–218. doi:10.3897/neobiota.18.4002

    Article  Google Scholar 

Download references

Acknowledgements

The Australian Alps managers, in particular Gill Anderson and Peter Jacobs, helped with discussions about invasive species of concern in the Australian Alps; Suzie Gaynor helped produce the framework diagram. This research is an output from the Landscapes and Policy Research Hub, which was supported through funding from the Australian Government’s National Environmental Research Programme.

Author contributions

RMBH and DJK conceived the ideas; RMBH, TR, DJK and NB collected the data; R. MBH and TR analysed the data; RMBH led the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. B. Harris.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, R.M.B., Kriticos, D.J., Remenyi, T. et al. Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species. Biol Invasions 19, 577–596 (2017). https://doi.org/10.1007/s10530-016-1334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1334-8

Keywords

Navigation