Skip to main content
Log in

Genetic engineering of crop plants for fungal resistance: role of antifungal genes

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Fungal diseases damage crop plants and affect agricultural production. Transgenic plants have been produced by inserting antifungal genes to confer resistance against fungal pathogens. Genes of fungal cell wall-degrading enzymes, such as chitinase and glucanase, are frequently used to produce fungal-resistant transgenic crop plants. In this review, we summarize the details of various transformation studies to develop fungal resistance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama T, Pillai MA, Sentoku N (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1,3-beta-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220:129–139

    Article  PubMed  CAS  Google Scholar 

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  Google Scholar 

  • Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1–2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res 12:497–508

    Article  PubMed  CAS  Google Scholar 

  • Chai B, Maqbool SB, Hajela RK, Green D, Vargas JM, Warkentin D, Sabzikar R, Sticklen MB (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci 163:183–193

    Article  CAS  Google Scholar 

  • Chang M, Culley D, Choi JJ, Hadwiger LA (2002) Agrobacterium-mediated co-transformation of a pea β-1,3-glucanase and chitinase genes in potato (Solanum tuberosum L. c.v. Russet Burbank) using a single selectable marker. Plant Sci 163:83–89

    Article  CAS  Google Scholar 

  • Chen SC, Liu AR, Zou ZR (2006) Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Plant Sci 5:2134–2140

    Google Scholar 

  • Cheong YH, Kim CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee SY, Cho MJ (2000) Molecular cloning of a soybean class III β-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci 154:71–81

    Article  PubMed  CAS  Google Scholar 

  • Chye M, Zhao K, He Z, Ramalingam S, Fung K (2005) An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta 220:717–730

    Article  PubMed  CAS  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martinez del Pozo A, Messeguer J, Segundo SB (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    Article  PubMed  CAS  Google Scholar 

  • Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection- related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  PubMed  CAS  Google Scholar 

  • Girgi M, Breese WA, Lorz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324

    Article  PubMed  CAS  Google Scholar 

  • Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340

    Google Scholar 

  • Hassan F, Meens J, Jacobsen H, Kiesecker H (2009) A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro. J Biotechnol 143:302–330

    Article  PubMed  CAS  Google Scholar 

  • He X, Miyasaka SC, Fitch MM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27:903–909

    Article  PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. doi:10.1007/s12038-011-9178-y

  • Islam A (2006) Fungus resistant transgenic plants: strategies, progress and lessons learnt. Plant Tissue Cult Biotechnol 16:117–138

    Google Scholar 

  • Kim JK, Duan X, Wu R, Seok SJ, Boston RS, Jang I-C (1999) Molecular and genetic analysis of transgenic rice plants expressing the maize ribosome-inactivating protein b-32 gene and the herbicide resistance bar gene. Mol Breed 5:85–94

    Article  CAS  Google Scholar 

  • Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662

    Article  CAS  Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja JAJ, Samiyappan R, Sudhakar D, Balasubramanian P (2003) A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    Article  CAS  Google Scholar 

  • Latha MA, Dasvantha Reddy V, Madavi Latha A, Venkateswara Rao K (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Zhu YM, Chen Q, Conner RL, Ding XD, Zhang BB (2004) Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biologia Plant 48:367–374

    Article  CAS  Google Scholar 

  • Mackintosh CA, Garvin DF, Radmer LE, Heinen SJ, Muehlbauer GJ (2006) A model wheat cultivar for transformation to improve resistance to fusarium head blight. Plant Cell Rep 25:313–319

    Article  PubMed  CAS  Google Scholar 

  • Mei L, Zong-xiu S, Jei Z, Tong X, Gary EH, Matteo L (2004) Enhancing rice resistance to fungal pathogens by transformation with cell degrading enzyme genes from Trichoderma atroviride. J Zhejiang Uni Sci 5:133–136

    Article  Google Scholar 

  • Melander M, Kamnert I, Happstadius I, Liljeroth E, Bryngelsson T (2006) Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double-gene construct. Plant Cell Rep 25:942–952

    Article  PubMed  CAS  Google Scholar 

  • Mitani N, Kobayashi S, Nishizawa Y, Kuniga T, Matsumoto R (2006) Transformation of trifoliate orange with rice chitinase gene and the use of the transformed plant as a rootstock. Sci Hortic 108:439–441

    Article  CAS  Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    Article  PubMed  CAS  Google Scholar 

  • Moravcıkova J, Libantova J, Heldak J, Salaj JM, Matusıkova I, Galova Z, Mlynarov L (2007) Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1,3-glucanase genes in transgenic potato plants. Acta Physiol Plant 29:133–141

    Article  Google Scholar 

  • Moravčíková J, Matušíková I, Libantová J, Bauer M, Mlynárová L (2004) Expression of cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tissue Organ Cult 79:161–168

    Article  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. Plant Mol Biol 51:143–152

    Article  PubMed  CAS  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay W, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Trans Res 13:181–190

    Article  CAS  Google Scholar 

  • Raham SK, Rinaldi S, Ikuo N, Masahiro M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20

    Article  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease- esistance genes for agricultural use. Curr Opin Biotechnol 11:120–125

    Article  PubMed  CAS  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and b-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    Article  CAS  Google Scholar 

  • Takakura Y, Ito T, Saito H, Inoue T, Komari T, Kuwata S (2000) Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Mol Biol 42:883–897

    Article  PubMed  CAS  Google Scholar 

  • Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hortic 82:13–123

    Article  Google Scholar 

  • Terakawa T, Takaya N, Horiuchi H, Koike M, Takagi M (1997) A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Rep 16:439–443

    CAS  Google Scholar 

  • Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv.Conlon). Plant Cell Rep 26:631–639

    Article  PubMed  CAS  Google Scholar 

  • Tohidfar MM, Mohammadi T, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult 83:83–96

    Article  CAS  Google Scholar 

  • van der Biezen EA (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6:89–91

    Article  PubMed  Google Scholar 

  • Vellicce GR, Ricci JCD, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgen Res 15:57–68

    Article  CAS  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    Article  CAS  Google Scholar 

  • Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 106:497–506

    Article  Google Scholar 

  • Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmiañski J, Kepczyñska E, Szopa J (2004) Expression of â-1, 3-glucanase in flax causes increased resistance to fungi: Physiol Mol. Plant Pathol 65:245–256

    Google Scholar 

  • Xiaotian M, Lijiang W, Chengcai AN, Huayi Y, Zhangliang C (2000) Resistance to rice blast (Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through Agrobacterium method. Chinese Sci Bulet 45:1774–1778

    Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Zhu H, Xu X, Xiao G, Yuan L, Li B (2007) Enhancing disease resistances of super hybrid rice with four antifungal genes. Sci China C Life Sci 50:31–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony Ceasar, S., Ignacimuthu, S. Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34, 995–1002 (2012). https://doi.org/10.1007/s10529-012-0871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0871-1

Keywords

Navigation