Skip to main content
Log in

Effects of Pulsatile Flow and Backwashing on Plasma Flow Rate in an Implantable Plasmapheresis. I. Theory and Principle

  • Published:
Biomedical Engineering Aims and scope

The first stage of blood filtration in kidneys involves separation of solids (blood cells and proteins) from liquid blood part (plasma). In an attempt to design and fabricate an implantable artificial kidney, this stage is considered fundamental and as such is given both in depth theoretical and experimental consideration. This report outlines the theory of backwashing to determine permeate flux dependence on time during cross-flow filtration in the case of blood cell separation. The presented method reduces, and we hope for elimination of, filter membrane fouling. The method proposed in this research will use the internal energy of the body (blood pressure pulsation) to provide enough movement for a diaphragm pump to provide a backwash flow as a phase of the filtration cycle. We investigated the effect of operational parameters such as cross-flow velocity, Womersley number, pressure difference, and filtration time on permeate flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann J., Ripperger S., J. Membr. Sci., 124, 119-128 (1997).

    Article  Google Scholar 

  2. Ostadfar A., Rawicz A.H., J. Med. Biol. Eng., Special Issue on Innovations in Clinical Devices, 32, 273–278 (2012).

  3. Sondhi R., Lin Y.S., Alvarez F., J. Membr. Sci., 174, 111–122 (2000).

    Article  Google Scholar 

  4. Vigneswaran S., Boonthanon S., Prasanthi H., Desalination, 106 , 31–38 (1996).

    Article  Google Scholar 

  5. Natasuka S., Nakate I., Miyano T., Desalination, 106, 55–61 (1996).

    Article  Google Scholar 

  6. Kennedy M., Kim S.M., Mutenyo I., Broens L., Schippers J., Desalination, 118, 175–188 (1998).

    Article  Google Scholar 

  7. Wei-Ming Lua, Kuo-Lun Tung, Chun-Hsi Pan, Kuo-Jen Hwang, J. Membr. Sci., 198, 2250_243 (2002).

    Google Scholar 

  8. Solomon B., Castino F., Lysaght M., Colton C., Friedman L., Trans. Am. Soc. Artif. Intern. Organs, 24, 21-26 (1978).

    Google Scholar 

  9. Onishi M., Shimura K., Seita Y., Yamashita S., Radiat. Phys. Chem., 46, 219–223 (1995).

    Article  Google Scholar 

  10. Meares P., Page K., Proc. B. Soc. Lond., 339, 513–532 (1974).

    Article  Google Scholar 

  11. Bronzino J. D. (ed.) The Biomedical Engineering Handbook, Second Edition, Section 30.2, CRC Press LLC (2000).

  12. Amornsamankul S., Wiwatanapataphee B., Wu Y.H., Lenbury Y., Int. J. Biol. Life Sci., 1, 42–46 (2005).

    Google Scholar 

  13. Chabra, R.P., Richardson J.F., Non_Newtonian Flow and Applied Rheology: Engineering Applications, Second Edn. (2008), p. 14.

  14. Baskurt O., Hardeman M., Rampling M., Meiselman H., Handbook of Homology and Hemodynamics, IOS Press (2007).

  15. Truskey G.A., Yuan F., Katz D.F., Transport Phenomena in Biological Systems, Prentice Hall (2008).

  16. Westerhof N., Stergiopulos N., Noble M.I.M., Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, Springer Science and Business Media, Inc. (2005), p. 29.

  17. Waite L., Fine J.P.E., Applied Biofluid Mechanics, The McGraw-Hill Companies (2007), pp. 18, 221.

  18. Gabrusa E., Szaniawska D., Desalination, 240, 46–53 (2009).

    Article  Google Scholar 

  19. Cakl J., Bauer I., Dolecek P., Mikulasek P., Desalination, 127, 189–198 (2000).

    Article  Google Scholar 

  20. Stauffer, P.H. (2006) Ground Water, 44, 125-128 (2006).

    Article  Google Scholar 

  21. Malbrancq, J.M., Jaffrin, M.Y., ASAIO J., 7, 16–24 (1984).

  22. Gomaa H.G., Raob S., Al-Taweel A.M., Sep. Purif. Technol., 78, 336–344 (2011).

    Article  Google Scholar 

  23. Olsson A., Stemme G., Stemme E., J. Micromech. Microeng., 9, 34–44 (1999).

    Article  Google Scholar 

  24. Akoum O.A., Jaffrin M.Y., Ding L., Paullier P., Vanhoutte C., J. Membr. Sci., 197, 37–52 (2002).

    Article  Google Scholar 

  25. Laser D.J., Santiago J.G., J. Micromech. Microeng., 14, R35-R64 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ostadfar.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 49, No. 1, Jan.-Feb., 2015, pp. 20–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostadfar, A., Rawicz, A. Effects of Pulsatile Flow and Backwashing on Plasma Flow Rate in an Implantable Plasmapheresis. I. Theory and Principle. Biomed Eng 49, 29–32 (2015). https://doi.org/10.1007/s10527-015-9490-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-015-9490-1

Keywords

Navigation