Skip to main content
Log in

Large-scale multi-robot task allocation via dynamic partitioning and distribution

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper introduces an approach that scales assignment algorithms to large numbers of robots and tasks. It is especially suitable for dynamic task allocations since both task locality and sparsity can be effectively exploited. We observe that an assignment can be computed through coarsening and partitioning operations on the standard utility matrix via a set of mature partitioning techniques and programs. The algorithm mixes centralized and decentralized approaches dynamically at different scales to produce a fast, robust method that is accurate and scalable, and reduces both the global communication and unnecessary repeated computation. An allocation results by operating on each partition: either the steps are repeated recursively to refine the generalized assignment, or each sub-problem may be solved by an existing algorithm. The results suggest that only a minor sacrifice in solution quality is needed for significant gains in efficiency. The algorithm is validated using extensive simulation experiments and the results show advantages over the traditional optimal assignment algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Superscript (k) denotes that this variable subjects to the k-th partition/sub-assignment. It applies to other variables throughout the paper.

  2. More precisely, a greedy choice can be employed locally, which is distinct from the Greedy Algorithm but is the same in spirit.

  3. We assume the multi-level partitioning algorithm costs O(n 3) for an n×n matrix, although it has been empirically demonstrated to be much faster (Karypis and Kumar 1998) than the spectral partitioning method, which has a running time complexity of O(n 3) dominated by computing the eigenvectors.

References

  • Arafeh, B. R., Day, K., & Touzene, A. (2008). A multilevel partitioning approach for efficient tasks allocation in heterogeneous distributed systems. Journal of Systems Architecture—Embedded Systems Design, 54(5), 530–548.

    Google Scholar 

  • Aykanat, C., Pinar, A., & Çatalyürek, Ü. V. (2002). Permuting sparse rectangular matrices into block-diagonal form. SIAM Journal on Scientific Computing, 25, 1860–1879.

    Article  Google Scholar 

  • Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., & Kleywegt, A. J. (2003). Robot exploration with combinatorial auctions. In Proc. of IEEE/RSJ intern. conf. on intelligent robots and systems (IROS’03) (pp. 1957–1962), Las Vegas, NV, U.S.A., October 2003.

    Chapter  Google Scholar 

  • Bertsekas, D. P., & Castanon, D. A. (1991). Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Computing, 17, 707–732.

    Article  MATH  Google Scholar 

  • Bertsekas, D. P. (1990). The auction algorithm for assignment and other network flow problems: a tutorial. Interfaces.

  • Çatalyürek, U. V., & Aykanat, C. (1999). Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Computing, 10, 673–693.

    Article  Google Scholar 

  • Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4, 226–234.

    Article  Google Scholar 

  • Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 25(4), 912–926.

    Article  Google Scholar 

  • Dhillon, I. S. (2001). Co-clustering documents and words using Bipartite spectral graph partitioning. In Proceedings of the ACM conference on knowledge discovery and data mining, San Francisco, CA (pp. 269–274).

    Google Scholar 

  • Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: a survey and analysis. Proceedings of the IEEE—Special Issue on Multi-robot Systems, 94(7), 1257–1270.

    Google Scholar 

  • Fiduccia, C., & Mattheyse, R. (1982). A linear time heuristic for improving network partitions. In Proc. 19th ACM/IEEE design automation conference (Vol. 49, pp. 175–181).

    Google Scholar 

  • Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1974). Some simplified NP-complete problems. In STOC’74: proceedings of the sixth annual ACM symposium on theory of computing (pp. 47–63).

    Chapter  Google Scholar 

  • Gerkey, B., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  • Gilbert, J. R., Miller, G. L., & Teng, S.-H. (1995). Geometric mesh partitioning: implementation and experiments. In Proc. International parallel processing symposium (pp. 418–427).

    Chapter  Google Scholar 

  • Goldberg, D., Cicirello, V. A., Dias, M. B., Simmons, R. G., Smith, S. F., & Stentz, A. (2003). Task allocation using a distributed market-based planning mechanism. In Proceedings of the international joint conference on autonomous agents & multiagent systems (AAMAS) (pp. 996–997), Melbourne, Australia.

    Chapter  Google Scholar 

  • Hendrickson, B. & Kolda, T. G. (1998). Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel processing. SIAM Journal on Scientific Computing, 21, 2048–2072.

    Article  MathSciNet  Google Scholar 

  • Hendrickson, B., & Leland, R. (1993). A multilevel algorithm for partitioning graphs. Technical report sand93-1301.

  • Hendrickson, B., Leland, R., & Plimpton, S. (1995). An efficient parallel algorithm for matrix-vector multiplication. International Journal of High Speed Computing, 7, 73–88

    Article  Google Scholar 

  • Ji, M., Azuma, S., & Egerstedt, M. (2006). Role-assignment in multi-agent coordination. International Journal of Assistive Robotics and Mechatronics, 7(1), 32–40.

    Google Scholar 

  • Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allocation. In Proc. of the international symposium on distributed autonomous robotic systems, Minneapolis, MM.

    Google Scholar 

  • Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20, 359–392.

    Article  MathSciNet  Google Scholar 

  • Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphics. The Bell System Technical Journal, 49, 291–307.

    MATH  Google Scholar 

  • Kloder, S., & Hutchinson, S. (2006). Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics, 22(4), 650–665.

    Article  Google Scholar 

  • Kolda, T. G. (1998). Partitioning sparse rectangular matrices for parallel processing. In LNCS (pp. 68–79).

    Google Scholar 

  • Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97.

    Article  MathSciNet  Google Scholar 

  • Lerman, K., Jones, C., Galstyan, A., & Maja, J. (2006). Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Research, 25, 225–242.

    Article  Google Scholar 

  • Liu, L., & Shell, D. (2011). Assessing optimal assignment under uncertainty: an interval-based algorithm. The International Journal of Robotics Research, 30(7), 936–953.

    Article  Google Scholar 

  • Melo, F. S., & Veloso, M. (2011). Decentralized MDPs with sparse interactions. Artificial Intelligence, 175(11), 1757–1789.

    Article  MathSciNet  MATH  Google Scholar 

  • Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In IEEE international conference on robotics and automation, Pasadena, CA, May 2008.

    Google Scholar 

  • Miller, G. L., Teng, S.-H., Thurston, W., & Vavasis, S. A. (1993). Automatic mesh partitioning. In A. George et al. (Ed.), Graphs theory and sparse matrix computation (pp. 57–84). Berlin: Springer.

    Chapter  Google Scholar 

  • Papa, D. A., & Markov, I. L. (2007). Hypergraph partitioning and clustering. In Approximation algorithms and metaheuristics.

    Google Scholar 

  • Pothen, A., Simmon, H. D., & Liou, K.-P. (1990). Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11, 430–452.

    Article  MathSciNet  MATH  Google Scholar 

  • Russell, S. J., & Norvig, P. (2009). Artificial intelligence: a modern approach (3rd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Simmons, R., Smith, T., Dias, M. B., Goldberg, D., Hershberger, D., Stentz, A., & Zlot, R. (2002). A layered architecture for coordination of mobile robots. In Multi-robot systems: from swarms to intelligent automata.

    Google Scholar 

  • Smith, S. L., & Bullo, F. (2009). Monotonic target assignment for robotic networks. IEEE Transactions on Automatic Control, 54(9), 2042–2057.

    Article  MathSciNet  Google Scholar 

  • Tang, F., & Parker, L. E. (2007). A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation. In Proc. of IEEE international conference on robotics and automation (ICRA’93) (pp. 3351–3358).

    Google Scholar 

  • Toroslu, I. H., & Üçoluk, G. (2007). Incremental assignment problem. Information Sciences, March 2007.

  • Zavlanos, M. M., & Pappas, G. J. (2008). Dynamic assignment in distributed motion planning with local coordination. IEEE Transactions on Robotics, 24(1), 232–242.

    Article  Google Scholar 

  • Zavlanos, M. M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In Proceedings of the IEEE conference on decision and control (pp. 1212–1217). Cancun Mexico, December 2008.

    Google Scholar 

  • Zlot, R., & Stentz, A. (2003). Market-based multirobot coordination using task abstraction. In The 4th international conference on field and service robotics.

    Google Scholar 

Download references

Acknowledgements

The authors thank G. Karypis, Ü. Çatalyürek and B. Hendrickson for providing useful tools and/or suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lantao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Shell, D.A. Large-scale multi-robot task allocation via dynamic partitioning and distribution. Auton Robot 33, 291–307 (2012). https://doi.org/10.1007/s10514-012-9303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-012-9303-2

Keywords

Navigation