Arafeh, B. R., Day, K., & Touzene, A. (2008). A multilevel partitioning approach for efficient tasks allocation in heterogeneous distributed systems. *Journal of Systems Architecture—Embedded Systems Design*, *54*(5), 530–548.

Aykanat, C., Pinar, A., & Çatalyürek, Ü. V. (2002). Permuting sparse rectangular matrices into block-diagonal form.

*SIAM Journal on Scientific Computing*,

*25*, 1860–1879.

CrossRef
Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., & Kleywegt, A. J. (2003). Robot exploration with combinatorial auctions. In

*Proc. of IEEE/RSJ intern. conf. on intelligent robots and systems (IROS’03)* (pp. 1957–1962), Las Vegas, NV, U.S.A., October 2003.

CrossRef
Bertsekas, D. P., & Castanon, D. A. (1991). Parallel synchronous and asynchronous implementations of the auction algorithm.

*Parallel Computing*,

*17*, 707–732.

MATHCrossRef
Bertsekas, D. P. (1990). The auction algorithm for assignment and other network flow problems: a tutorial. Interfaces.

Çatalyürek, U. V., & Aykanat, C. (1999). Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication.

*IEEE Transactions on Parallel and Distributed Computing*,

*10*, 673–693.

CrossRef
Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions.

*Autonomous Robots*,

*4*, 226–234.

CrossRef
Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task allocation.

*IEEE Transactions on Robotics*,

*25*(4), 912–926.

CrossRef
Dhillon, I. S. (2001). Co-clustering documents and words using Bipartite spectral graph partitioning. In *Proceedings of the ACM conference on knowledge discovery and data mining*, San Francisco, CA (pp. 269–274).

Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: a survey and analysis. *Proceedings of the IEEE—Special Issue on Multi-robot Systems*, *94*(7), 1257–1270.

Fiduccia, C., & Mattheyse, R. (1982). A linear time heuristic for improving network partitions. In *Proc. 19th ACM/IEEE design automation conference* (Vol. 49, pp. 175–181).

Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1974). Some simplified NP-complete problems. In

*STOC’74: proceedings of the sixth annual ACM symposium on theory of computing* (pp. 47–63).

CrossRef
Gerkey, B., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems.

*International Journal of Robotics Research*,

*23*(9), 939–954.

CrossRef
Gilbert, J. R., Miller, G. L., & Teng, S.-H. (1995). Geometric mesh partitioning: implementation and experiments. In

*Proc. International parallel processing symposium* (pp. 418–427).

CrossRef
Goldberg, D., Cicirello, V. A., Dias, M. B., Simmons, R. G., Smith, S. F., & Stentz, A. (2003). Task allocation using a distributed market-based planning mechanism. In

*Proceedings of the international joint conference on autonomous agents & multiagent systems (AAMAS)* (pp. 996–997), Melbourne, Australia.

CrossRef
Hendrickson, B. & Kolda, T. G. (1998). Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel processing.

*SIAM Journal on Scientific Computing*,

*21*, 2048–2072.

MathSciNetCrossRef
Hendrickson, B., & Leland, R. (1993). *A multilevel algorithm for partitioning graphs*. Technical report sand93-1301.

Hendrickson, B., Leland, R., & Plimpton, S. (1995). An efficient parallel algorithm for matrix-vector multiplication.

*International Journal of High Speed Computing*,

*7*, 73–88

CrossRef
Ji, M., Azuma, S., & Egerstedt, M. (2006). Role-assignment in multi-agent coordination. *International Journal of Assistive Robotics and Mechatronics*, *7*(1), 32–40.

Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allocation. In *Proc. of the international symposium on distributed autonomous robotic systems*, Minneapolis, MM.

Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning irregular graphs.

*SIAM Journal on Scientific Computing*,

*20*, 359–392.

MathSciNetCrossRef
Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphics.

*The Bell System Technical Journal*,

*49*, 291–307.

MATH
Kloder, S., & Hutchinson, S. (2006). Path planning for permutation-invariant multirobot formations.

*IEEE Transactions on Robotics*,

*22*(4), 650–665.

CrossRef
Kolda, T. G. (1998). Partitioning sparse rectangular matrices for parallel processing. In *LNCS* (pp. 68–79).

Kuhn, H. W. (1955). The Hungarian method for the assignment problem.

*Naval Research Logistics Quarterly*,

*2*, 83–97.

MathSciNetCrossRef
Lerman, K., Jones, C., Galstyan, A., & Maja, J. (2006). Analysis of dynamic task allocation in multi-robot systems.

*International Journal of Robotics Research*,

*25*, 225–242.

CrossRef
Liu, L., & Shell, D. (2011). Assessing optimal assignment under uncertainty: an interval-based algorithm.

*The International Journal of Robotics Research*,

*30*(7), 936–953.

CrossRef
Melo, F. S., & Veloso, M. (2011). Decentralized MDPs with sparse interactions.

*Artificial Intelligence*,

*175*(11), 1757–1789.

MathSciNetMATHCrossRef
Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In *IEEE international conference on robotics and automation*, Pasadena, CA, May 2008.

Miller, G. L., Teng, S.-H., Thurston, W., & Vavasis, S. A. (1993). Automatic mesh partitioning. In A. George et al. (Ed.),

*Graphs theory and sparse matrix computation* (pp. 57–84). Berlin: Springer.

CrossRef
Papa, D. A., & Markov, I. L. (2007). Hypergraph partitioning and clustering. In *Approximation algorithms and metaheuristics*.

Pothen, A., Simmon, H. D., & Liou, K.-P. (1990). Partitioning sparse matrices with eigenvectors of graphs.

*SIAM Journal on Matrix Analysis and Applications*,

*11*, 430–452.

MathSciNetMATHCrossRef
Russell, S. J., & Norvig, P. (2009). *Artificial intelligence: a modern approach* (3rd ed.). Upper Saddle River: Prentice-Hall.

Simmons, R., Smith, T., Dias, M. B., Goldberg, D., Hershberger, D., Stentz, A., & Zlot, R. (2002). A layered architecture for coordination of mobile robots. In *Multi-robot systems: from swarms to intelligent automata*.

Smith, S. L., & Bullo, F. (2009). Monotonic target assignment for robotic networks.

*IEEE Transactions on Automatic Control*,

*54*(9), 2042–2057.

MathSciNetCrossRef
Tang, F., & Parker, L. E. (2007). A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation. In *Proc. of IEEE international conference on robotics and automation (ICRA’93)* (pp. 3351–3358).

Toroslu, I. H., & Üçoluk, G. (2007). Incremental assignment problem. Information Sciences, March 2007.

Zavlanos, M. M., & Pappas, G. J. (2008). Dynamic assignment in distributed motion planning with local coordination.

*IEEE Transactions on Robotics*,

*24*(1), 232–242.

CrossRef
Zavlanos, M. M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In *Proceedings of the IEEE conference on decision and control* (pp. 1212–1217). Cancun Mexico, December 2008.

Zlot, R., & Stentz, A. (2003). Market-based multirobot coordination using task abstraction. In *The 4th international conference on field and service robotics*.