Skip to main content
Log in

Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320, 2010). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Note also that in the case where there are no limits for the robot’s maximum height and the maximum sensing distance, it suffices to have a single robot at a very high position to monitor the whole terrain.

References

  • Ascending Technologies GmbH, website, http://www.asctec.de.

  • Bloesch, M., Weiss, S., Scaramuzza, D., & Siegwart, R. (2010). Vision based MAV navigation in unknown and unstructured environments. In IEEE international conference on robotics and automation (ICRA) (pp. 21–28).

    Chapter  Google Scholar 

  • Breitenmoser, A., Metzger, J., Siegwart, R., & Rus, D. (2010). Distributed coverage control on surfaces in 3D space. In IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan (pp. 5569–5576).

    Google Scholar 

  • Breitenmoser, A., Schwager, M., Metzger, J., Siegwart, R., & Rus, D. (2010). Voronoi coverage of non-convex environments with a group of networked robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Anchorage, USA (pp. 4982–4989).

    Google Scholar 

  • Chen, H., & Xu, Z. (2006). 3D map building based on stereo vision. In Proceedings of the IEEE international conference on networking, sensing and control, ICNSC (pp. 969–973).

    Chapter  Google Scholar 

  • Cortés, J., Martínez, S., Karataş, T., & Bullo, F. (2004). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255.

    Article  Google Scholar 

  • Ganguli, A., Cortés, J., & Bullo, F. (2005). Maximizing visibility in nonconvex polygons: nonsmooth analysis and gradient algorithm design. American Control Conference, 2, 792–797.

    Google Scholar 

  • Ganguli, A., Cortés, J., & Bullo, F. (2007). Visibility-based multi-agent deployment in orthogonal environments. In American control conference, New York, USA (pp. 3426–3431).

    Chapter  Google Scholar 

  • Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.-M., Hirzinger, G., & Rus, D. (2007). Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz. In IEEE international conference on robotics and automation (ICRA) (pp. 361–366).

    Google Scholar 

  • Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In Proceedings of the 6th international conference on distributed autonomous robotic system (DARS) (pp. 299–308).

    Google Scholar 

  • Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental deployment algorithm for mobile robot teams. In Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Lausanne, Switzerland (pp. 2849–2854).

    Chapter  Google Scholar 

  • In So, K., & Kanade, T. (1990). High resolution terrain map from multiple sensor data. In Intelligent robots and systems.

    Google Scholar 

  • Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In International symposium on mixed and augmented reality (pp. 225–234).

    Google Scholar 

  • Kosmatopoulos, E. B. (2009). An adaptive optimization scheme with satisfactory transient performance. Automatica, 45(3), 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Kosmatopoulos, E. B., & Kouvelas, A. (2009). Large-scale nonlinear control system fine-tuning through learning. IEEE Transactions on Neural Networks, 20(6), 1009–1023.

    Article  Google Scholar 

  • Kosmatopoulos, E. B., Papageorgiou, M., Vakouli, A., & Kouvelas, A. (2007). Adaptive fine-tuning of nonlinear control systems with application to the urban traffic control strategy TUC. IEEE Transactions on Control Systems Technology, 15(6), 991–1002.

    Article  Google Scholar 

  • Lacroix, S., Jung, I., & Mallet, A. (2001). Digital elevation map building from low altitude stereo imagery. In Proc. of the 9 th int. symposium on intelligent robotic systems.

    Google Scholar 

  • O’Rourke, J. (1987). Art gallery theorems and algorithms. New York: Oxford University Press.

    MATH  Google Scholar 

  • Pimenta, L., Kumar, V., Mesquita, R. C., & Pereira, G. (2008). Sensing and coverage for a network of heterogeneous robots. In 47th IEEE conference on decision and control, Cancun, Mexico (pp. 3947–3952).

    Chapter  Google Scholar 

  • Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: an open-source robot operating system. In ICRA workshop on open source software.

    Google Scholar 

  • Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2010). Cognitive-based adaptive control for cooperative multi-robot coverage. In Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan (pp. 3314–3320).

    Google Scholar 

  • Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E.B. (2011). Adaptive-based distributed cooperative multi-robot coverage. In Proceedings of the American control conference (ACC), San Francisco, CA, USA.

    Google Scholar 

  • Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2012, in press). Multi-robot 3d coverage of unknown areas. International Journal of Robotics Research. doi:10.1177/0278364912439332.

  • Schwager, M., McLurkin, J., & Rus, D. (2006). Distributed coverage control with sensory feedback for networked robots. In Proceedings of robotics: science and systems, Philadelphia, USA.

    Google Scholar 

  • Schwager, M., Julian, B. J., & Rus, D. (2009). Optimal coverage for multiple hovering robots with downward facing camera. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Kobe, Japan (pp. 3515–3522).

    Google Scholar 

  • Strasdat, H., Montiel, J. M. M., & Davison, A. J. (2011). Real-time monocular SLAM: why filter. In IEEE international conference on robotics and automation (ICRA) (pp. 2657–2664).

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2000). A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proc. of the IEEE international conference on robotics and automation (ICRA) (Vol. 1, pp. 321–328).

    Google Scholar 

  • Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 2276–2282).

    Chapter  Google Scholar 

  • Urrutia, J. (2000). Art gallery and illumination problems. In Handbook of computational geometry (pp. 973–1027).

    Chapter  Google Scholar 

  • Weiss, S., & Siegwart, R. (2011). Real-time metric state estimation for modular vision-inertial systems. In IEEE international conference on robotics and automation (ICRA) (pp. 4531–4537).

    Chapter  Google Scholar 

  • Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). Intuitive 3D maps for MAV terrain exploration and obstacle avoidance. Journal of Intelligent & Robotic Systems, 61, 473–493.

    Article  Google Scholar 

  • Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics, 28(6), 1–21.

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Communities Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 231855 (sFly).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lefteris Doitsidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doitsidis, L., Weiss, S., Renzaglia, A. et al. Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Auton Robot 33, 173–188 (2012). https://doi.org/10.1007/s10514-012-9292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-012-9292-1

Keywords

Navigation