Skip to main content
Log in

Influence of Co-flow on Flickering Diffusion Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The influence of air co-flow on flickering methane diffusion flame was studied experimentally using the image processing technique and the proper orthogonal decomposition (POD) analysis. The flickering of the flame is characterized by the mean height, the oscillation amplitude and the Strouhal number, which are measured by the digital image analysis of the diffusion flame. The experiments are carried out for various combinations of burner diameters, fuel velocities and co-flow velocities. With increasing the velocity ratio of the co-flow to the fuel flow, the oscillation amplitude is decreased and the Strouhal number is increased slightly in proportional to the inverse Froude number, while the frequency jump occurs in the low co-flow velocity ratio. These results are commonly observed in all the burners of different diameters, while the critical co-flow velocity ratio to suppress the flickering is found to be increased with increasing the burner diameters due to the influence of Froude number. The POD analysis of the flickering flame shows that the flickering energy is dominant in the first two POD modes and they are axisymmetric except for the zero co-flow velocity case and fully suppressed case. The correlation of POD coefficients in the first two fluctuating POD modes suggests the suppression of large-scale structure of flickering due to the influence of co-flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Buckmaster, J., Peters, N.: The infinite candle and its stability, a paradigm for flickering diffusion flames. Proc. Combust. Inst. 21, 1829–1836 (1986)

    Article  Google Scholar 

  2. Chen, L.D., Seaba, J.P., Roquemore, W.M., Goss, L.P.: Buoyant diffusion flames. Proc. Combust. Inst 22, 677–684 (1988)

    Article  Google Scholar 

  3. Hamins, A., Yang, J.C., Kashiwagi, T.: An experimental investigation of the pulsation frequency of flames. Proc. Combust. Inst. 24, 1695–1702 (1992)

    Article  Google Scholar 

  4. Katta, V.R., Roquemore, W.M.: Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame 92, 274–282 (1993)

    Article  Google Scholar 

  5. Katta, V.R., Goss, L.P., Roquemore, W.M.: Effect of nonunity Lewis number and finite-rate chemistry on the dynamics of a hydrogen-air jet diffusion flame. Combust. Flame 96, 60–74 (1994)

    Article  Google Scholar 

  6. Yuan, T., Durox, D., Villermaux, E.: An analogue study for flame flickering. Exp. Fluids 17, 337–349 (1994)

    Article  Google Scholar 

  7. Lingens, A., Reeker, M., Schreiber, M.: Instability of buoyant diffusion flames. Exp. Fluids 20, 243–248 (1996). 3

    Article  Google Scholar 

  8. Lingens, A., Neemann, K., Meyer, J., Schreiber, M.: Instability of diffusion flames. Proc. Combust. Inst 26, 1053–1061 (1996)

    Article  Google Scholar 

  9. Shu, Z., Aggarwal, S.K., Katta, V.R., Puri, I.K.: Flame-vortex dynamics in an inverse partially premixed combustor: the Froude number effects. Combust. Flame 111, 276–295 (1997)

    Article  Google Scholar 

  10. Smyth, K.C., Shaddix, C.R., Everest, D.A.: Aspects of soot dynamics as revealed by measurements of broadband fluorescence and flame luminosity in flickering diffusion flames. Combust. Flame 111, 185–207 (1997)

    Article  Google Scholar 

  11. Jiang, X., Luo, K.H.: Direct numerical simulation of the puffing phenomenon of an axisymmetric thermal plume. Theoret. Comput. Fluid Dyn. 14, 55–74 (2000)

    Article  MATH  Google Scholar 

  12. Jiang, X., Luo, K.H.: Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst. 28, 1989–1995 (2000)

    Article  Google Scholar 

  13. Yilmaz, N., Donaldson, A.B., Gill, W., Lucero, R.E.: Imaging of flame behavior in flickering methane/air diffusion flames. J. Vis 12, 47–55 (2009)

    Article  Google Scholar 

  14. Albers, B.W., Agrawal, A.K.: Schilieren analysis of an oscillating gas-jet diffusion flame. Combust. Flame 119, 84–94 (1999)

    Article  Google Scholar 

  15. Huang, Y., Yan, Y., Lu, G., Reed, A.: On-line flickering measurement of gaseous flames by image processing and spectral analysis. Meas. Sci. Technol. 10, 726–733 (1999)

    Article  Google Scholar 

  16. Fujisawa, N., Nakashima, K.: Simultaneous measurement of three-dimensional flame contour and velocity field for characterizing the flickering motion of a dilute hydrogen flame. Meas. Sci. Technol. 7, 2103–2100 (2007)

    Article  Google Scholar 

  17. Guahk, Y.T., Lee, D.K., Oh, K.C., Shin, H.D.: Flame-intrinsic Kelvin-Helmholtz instability of flickering premixed flames. Energy Fuels 23, 3875–3884 (2009)

    Article  Google Scholar 

  18. Kolhe, P.S., Agrawal, A.K.: Role of buoyancy on instabilities and structure of transitional gas jet diffusion flames. Flow Turbul. Combust 79, 343–360 (2007)

    Article  Google Scholar 

  19. Tanoue, K., Ogura, Y., Takayanagi, M., Nishimura, T.: Measurement of temperature distribution for the flickering phenomenon around the premixed flame by using laser speckle method. J. Vis 13, 183–185 (2010)

    Article  Google Scholar 

  20. Ohkubo, M., Nakagawa, Y., Yamagata, T., Fujisawa, N.: Quantitative visualization of temperature field in non-luminous flame by flame reaction technique. J. Vis 14, 101–108 (2012)

    Article  Google Scholar 

  21. Xiong, Y., Cha, M.S., Chung, S.H.: Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames. Proc. Combust. Inst. 35, 873–880 (2015)

    Article  Google Scholar 

  22. Zhou, X., Luo, K.H., Williams, J.J.R.: Numerical studies on vortex structures in the near field of oscillating diffusion flames. Heat Mass Transfer 37, 101–110 (2001)

    Article  Google Scholar 

  23. Takahashi, F., Linteris, G.T., Katta, V.R.: Vortex-coupled oscillations of edge diffusion flames in coflowing air with dilution. Proc. Combust. Inst 31, 1575–1582 (2007)

    Article  Google Scholar 

  24. Cheung, S.C.P., Yeoh, G.H., Cheung, A.L.K., Yuen, R.K.K., Lo, S.M.: Flickering behavior of turbulent buoyant fires using large-eddy simulation. Numer. Heat Transfer. Part A 52, 679–712 (2007)

    Article  Google Scholar 

  25. Boulanger, J.: Laminar round jet diffusion flame buoyant instabilities: Study on the disappearance of varicose structures at ultra-low Froude number. Combust. Flame 157, 757–768 (2010)

    Article  Google Scholar 

  26. Williams, T.C., Shaddix, C.R., Schefer, R.W., Desgroux, P.: The response of buoyant laminar diffusion flames to low-frequency forcing. Combust. Flame 151, 676–684 (2007)

    Article  Google Scholar 

  27. Kozlov, V.V., Grek, G.R., Katasonov, M.M., Korobeinichev, O.P., Litvinenko1, Y.A., Shmakov, A.G.: Stability of subsonic microjet flows and combustion. J. Flow Contr. Meas. Vis. 1, 108–111 (2013)

  28. Sahu, K.B., Kundu, A., Gangury, R., Datta, A.: Effects of fuel type and equivalence ratios on the flickering of triple flames. Combust. Flame 156, 484–493 (2009)

    Article  Google Scholar 

  29. Gohari Darabkhani, H., Wang, Q., Chen, Q., Zhang, Y.: Impact of co-flow on buoyant diffusion flames flicker. Energ. Convers. Manage. 52, 2996–3003 (2011)

    Article  Google Scholar 

  30. Wang, Q., Gohari Darabkhani, H., Chen, Q., Zhang, Y.: Vortex dynamics and structures of methane/air jet diffusion flames with air co-flow. Exp. Therm. Fluid Sci. 37, 84–90 (2012)

    Article  Google Scholar 

  31. Fujisawa, N., Abe, T., Yamagata, T., Tomidokoro, H.: Flickering characteristics and temperature field of premixed methane/air flame under the influence of co-flow. Energ. Convers. Manage. 78, 374–385 (2014)

    Article  Google Scholar 

  32. Sirovich, L.: Turbulence and the dynamics of coherent structures; part 1 coherent structures. Q. Appl. Math 45, 561–571 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  34. Berkooz, G., Elezgaray, J., Holmes, P., Lumley, J., Poje, A.: The proper orthogonal decomposition, wavelets and modal approaches to the dynamics of coherent structures. Appl. Sci. Res. 53, 321–338 (1994)

    Article  MATH  Google Scholar 

  35. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Z-C., Adrian, R.J., Hanratty, T.J.: Large-scale modes of turbulent channel flow: Transport and structure. J. Fluid Mech. 448, 53–80 (2001)

    Article  MATH  Google Scholar 

  37. Zhou, X., Hitt, D.L.: Proper orthogonal decomposition analysis of coherent structures in a transient buoyant jet. J. Turbulence 5, 1–21 (2004)

    Article  Google Scholar 

  38. van Oudheusden, B.W., Scarano, F., van Hinsberg, N.P., Watt, D.W.: Phase-resolved characteristics of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 86–98 (2005)

    Article  Google Scholar 

  39. Muld, T.W., Efraimsson, G., Henningson, D.S.: Mode decomposition on surface-mounted cube. Flow Turbul. Combust. 88, 279–310 (2012)

    Article  MATH  Google Scholar 

  40. Watanabe, R., Yamagata, T., Fujisawa, N.: Three-dimensional flow structure in highly buoyant jet by scanning stereo PIV combined with POD analysis. Int. J. Heat Fluid Flow 52, 98–110 (2015)

    Article  Google Scholar 

  41. Watanabe, R., Kikuchi, T., Yamagata, T., Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Contr., Meas. Vis. 3, 106–110 (2015)

    Google Scholar 

  42. Duwig, C., Iudiciani, P.: Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbul. Combust 84, 25–47 (2010)

    Article  MATH  Google Scholar 

  43. Fujisawa, N., Yamada, J., Yamagata, T.: Measurement of three-dimensional temperature field of flickering premixed flame with and without co-flow. Flow Turbul. Combust 93, 723–739 (2014)

    Article  Google Scholar 

  44. Matsui, Y., Kamimoto, T., Matsuoka, S.: A study on the time and space resolved measurement of flame temperature and soot concentration in a DI diesel engine by the two-color method, SAE Technical Paper, No. 790491 (1979)

Download references

Acknowledgments

The authors would like to express thanks to Mr. J. Yamada and Mr. T. Okuda from Graduate School of Science and Technology in Niigata University for their help during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisawa, N., Matsumoto, Y. & Yamagata, T. Influence of Co-flow on Flickering Diffusion Flame. Flow Turbulence Combust 97, 931–950 (2016). https://doi.org/10.1007/s10494-016-9730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9730-9

Keywords

Navigation