Skip to main content
Log in

Measurement of Three-Dimensional Temperature Field of Flickering Premixed Flame with and without Coflow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The three-dimensional (3D) temperature field of the flickering flame with and without coflow can be measured using the flame reaction technique combined with tomographic reconstruction. This combined experimental technique facilitates the non-intrusive measurement of the unsteady 3D temperature field of a premixed methane/air flame. The target flame visualization, which was achieved by the flame reaction of sodium in the supplied mists of sodium chloride solution and line-of-sight intensity images of the flame, was transformed into the temperature field using calibration with the sodium D-line reversal method combined with imaging from six CCD cameras located around the flame. The uncertainty in tomographic temperature measurement was confirmed for the steady axisymmetric flame under the influence of strong coflow. Tomographic temperature measurements were applied to the flickering flame with and without coflow, and the results were analyzed using proper orthogonal decomposition (POD) to understand the unsteady behavior of the temperature field of the flickering flame. The flickering energy was found to be dominant in the first two POD modes. Flame flickering with and without coflow was found to be dominant in the axisymmetric and non-axisymmetric modes, respectively. The characteristics of the flickering flame with and without coflow are discussed in this paper, based on spectrum analysis. The results suggest that the structure of the flickering flame is highly modified by the presence of even a small magnitude of coflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stricker, W.P.: Measurement of temperature in laboratory flames and practical devices. In: Kohse-Hoinghaus, K., Jeffries, J.B. (eds.) Applied Combustion Diagnostics. Taylor and Francis (2002)

  2. Chung, S.H.: Several applications of laser diagnostics for visualization of combustion phenomena. J. Vis. 6, 95–106 (2003)

    Article  Google Scholar 

  3. Greenberg, P.S., Klimek, R.B., Buchele, D.R.: Quantitative rainbow schlieren deflectometry. Appl. Optics. 34, 3810–3825 (1995)

    Article  Google Scholar 

  4. Albers, B.W., Agrawal, A.K.: Schlieren analysis of an oscillating gas-jet diffusion flame. Combust. Flame 119, 84–94 (1999)

    Article  Google Scholar 

  5. Tieng, S.M., Lin, C.C., Wang, Y.C., Fujiwara, T.: Effect of composition distribution on holographic temperature measurement of a diffuse flame. Meas. Sci. Technol. 7, 477–488 (1996)

    Article  Google Scholar 

  6. Walsh, T.E., Kihm, K.D.: Tomographic deconvolution of laser Speckle photography applied for flame temperature measurement. In: Proceedings 7th Int. Symp. Flow Vis., pp. 898–903. Seattle (1995)

  7. Fujisawa, N., Aiura, S., Ohkubo, M., Shimizu, T.: Temperature measurement of dilute hydrogen flame by digital laser-speckle technique. J. Vis. 12, 57–64 (2009)

    Article  Google Scholar 

  8. Panagiotou, T., Levendis, Y., Delichatsios, M.: Measurements of particle flame temperatures using three-color optical pyrometry. Combust. Flame 104, 272–287 (1996)

    Article  Google Scholar 

  9. Ohkubo, M., Nakagawa, Y., Yamagata, T., Fujisawa, N.: Quantitative visualization of temperature field in non-luminous flame by flame reaction technique. J. Vis. 14, 101–108 (2012)

    Article  Google Scholar 

  10. Ohkubo, M., Fujisawa, N., Nakamura, Y.: Visualization of temperature field in combustion by flame reaction technique. In: Proceedings 13th Int. Symp. Flow Vis., Nice, Paper 296 (2008)

  11. Fujisawa, N., Abe, T., Yamagata, T., Tomidokoro, H.: Flickering characteristics and temperature field of premixed methane/air flame under the influence of co-flow. Energy Convers. Manage. 77, 374–385 (2014)

    Google Scholar 

  12. Gordon, R.: A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. NS-21, 78–92 (1974)

    Google Scholar 

  13. Verhoeven, D.: Limited data computed tomography algorithms for the physical sciences. Appl. Opt. 32, 3736–3754 (1993)

    Article  Google Scholar 

  14. Ko, H.S., Kihm, K.D.: An extended algebraic reconstruction technique (ART) for density-gradient projection: laser speckle phographic tomography. Exp. Fluids 27, 542–550 (1999)

    Article  Google Scholar 

  15. Schwarz, A.: Multi-tomographic flame analysis with a schlieren apparatus. Meas. Sci. Technol. 7, 406–413 (1996)

    Article  Google Scholar 

  16. Wondraczek, L., Khorsandi, A., Willer, U., Heide, G., Schade, W., Frischat, G.H.: Mid-infrared laser-tomographic imaging of carbon monoxide in laminar flames by difference frequency generation. Combust. Flame 138, 30–39 (2004)

    Article  Google Scholar 

  17. Ishino, Y., Ohiwa, N.: Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame. JSME Int. J. Series B 48, 34–40 (2005)

    Article  Google Scholar 

  18. Floyd, J., Kempf, A.M.: Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner. Proc. Combust. Inst. 33, 751–758 (2011)

    Article  Google Scholar 

  19. Hossain, M.M., Lu, G., Sun, D., Yan, Y.: Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-color pyrometric techniques. Meas. Sci. Technol. 24, 074010 (2013)

    Article  Google Scholar 

  20. Buckmaster, J., Peters, N.: The infinite candle and its stability; a paradigm for flickering diffusion flames. In: 21st Int. Symp. Combust., pp. 1829–1836. The Combustion Institute, Pittsburgh (1986)

    Google Scholar 

  21. Katta, V.R., Roquemore, W.M.: Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame 92, 274–282 (1993)

    Article  Google Scholar 

  22. Katta, V.R., Goss, L.P., Roquemore, W.M.: Effect of nonunity Lewis number and finite-rate chemistry on the dynamics of a hydrogen-air jet diffusion flame. Combust. Flame 96, 60–74 (1994)

    Article  Google Scholar 

  23. Huang, Y., Yan, Y., Lu, G., Reed, A.: On-line flickering measurement of gaseous flames by image processing and spectral analysis. Meas. Sci. Technol. 10, 726–733 (1999)

    Article  Google Scholar 

  24. Hamins, A., Yang, J.C., Kashiwagi, T.: An Experimental Investigation of the pulsation frequency of flames. In: 24th Symp. Combust (1992)

  25. Sahu, K.B., Kundu, A., Ganguly, R., Datta, A.: Effects of fuel type and equivalence ratios on the flickering of triple flames. Combust. Flame 156, 484–493 (2009)

    Article  Google Scholar 

  26. Fujisawa, N., Nakashima, K.: Simultaneous measurement of three-dimensional flame contour and velocity field for characterizing the flickering motion of a dilute hydrogen flame. Meas. Sci. Technol. 18, 2103–2100 (2007)

    Article  Google Scholar 

  27. Gohari Darabkhani, H., Wang, Q., Chen, Q., Zhang, Y.: Impact of co-flow on buoyant diffusion flames flicker. Energy Convers. Manage. 52, 2996–3003 (2011)

    Article  Google Scholar 

  28. Wang, Q., Gohari Darabkhani, H., Chen, Q., Zhang, Y.: Vortex dynamics and structures of methane/air jet diffusion flames with air coflow. Exp. Therm. Fluid Sci. 37, 84–90 (2012)

    Article  Google Scholar 

  29. Bellac, M.L., Mortessagne, F., Batrouni, G.G.: Equilibrium and Non-Equilibrium Statistical Thermodynamics, pp. 267–334. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  30. Thomas, D.L.: Problems in applying the line reversal method of temperature measurement to flames. Combust. Flame 12, 541–549 (1968)

    Article  Google Scholar 

  31. Philip, T., Bauman, L., Benton, R.: Sodium Reversal Plasma Temperature Measurement System. FE-15601, Topical Report (1992)

  32. Sirovich, L.: Turbulence and the dynamics of coherent structures; part 1 coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    MATH  MathSciNet  Google Scholar 

  33. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  34. Liu, Z.-C., Adrian, R.J., Hanratty, T.J.: Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 53–80 (2001)

    MATH  Google Scholar 

  35. van Oudheusden, B.W., Scarano, F., van Hinsberg, N.P., Watt, D.W.: Phase-resolved characteristics of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 86–98 (2005)

    Article  Google Scholar 

  36. Muld, T.W., Efraimsson, G., Henningson, D.S.: Mode decomposition on surface-mounted cube. Flow Turbul. Combust. 88, 279–310 (2012)

    Article  MATH  Google Scholar 

  37. Duwig, C., Iudiciani, P.: Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbul. Combust. 84, 25–47 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisawa, N., Yamada, J. & Yamagata, T. Measurement of Three-Dimensional Temperature Field of Flickering Premixed Flame with and without Coflow. Flow Turbulence Combust 93, 723–739 (2014). https://doi.org/10.1007/s10494-014-9568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9568-y

Keywords

Navigation