Skip to main content
Log in

DNS Assessment of a Simple Model for Evaluating Velocity Conditioned to Unburned Gas in Premixed Turbulent Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Recently, a simple model for evaluating turbulent scalar flux in premixed flames was developed and validated using six experimental data sets obtained from flames stabilized in impinging jets (Sabelnikov and Lipatnikov, Combust. Sci. Technol. 183, 588–613, 2011; Sabelnikov and Lipatnikov, Flow Turbulence Combust. 90, 387–400, 2013). The model addresses the flamelet regime of premixed turbulent combustion and yields an algebraic expression for the mean velocity conditioned to unburned mixture, while turbulent scalar flux is evaluated substituting this conditioned velocity into the well-known Bray-Moss-Libby (BML) expressions. The present work aims at further assessment of the aforementioned model against two well-known 3D DNS databases obtained from statistically planar, 1D premixed turbulent flames characterized by various density ratios (7.53, 5.0, 3.3, and 2.5). For the highest density ratio, an excellent agreement between the model and DNS data was obtained. This result is particularly encouraging, because the experimental data used earlier to test the model are associated with approximately the same (7-8) density ratios. However, the DNS data obtained for lower density ratios indicate a trend, not addressed by the original model, i.e. a model parameter is not a constant but decreases with decreasing density ratio, with the dependence of the model parameter on the density ratio being roughly linear for three flames addressed by one DNS database. Implementation of this linear fit into the model makes it consistent both with the DNS and with all experimental data used earlier to validate the original model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clavin, P., Williams, F.A.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 589–604 (1979)

    Article  MATH  Google Scholar 

  2. Libby, P.A., Bray, K.N.C.: Countergradient diffusion in premixed turbulent flames. AIAA J. 19, 205–213 (1981)

    Article  Google Scholar 

  3. Moss, J.B.: Simultaneous measurements of concentration and velocity in an open premixed turbulent flame. Combust. Sci. Technol. 22, 119–129 (1980)

    Article  Google Scholar 

  4. Yanagi, T., Mimura, Y.: Velocity-temperature correlation in premixed flame. Proc. Combust. Inst. 18, 1031–1039 (1981)

    Article  Google Scholar 

  5. Bray, K.N.C.: Turbulent transport in flames. Proc. R. Soc. London A 451, 231–256 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)

    Article  Google Scholar 

  7. Lipatnikov, A.N.: Fundamentals of Premixed Turbulent Combustion. CRC Press (2012)

  8. Robin, V., Mura, A., Champion, M.: Algebraic models for turbulent transports in premixed flames. Combust. Sci. Technol. 184, 1718–1742 (2012)

    Article  Google Scholar 

  9. Bray, K.N.C, Moss, J.B.: A unified statistical model for the premixed turbulent flame. Acta Astronautica 4, 291–319 (1977)

    Article  Google Scholar 

  10. Libby, P.A., Bray, K.N.C.: Variable density effects in premixed turbulent flames. AIAA J. 15, 1186–1193 (1977)

    Article  Google Scholar 

  11. Sabelnikov, V.A., Lipatnikov, A.N.: A simple model for evaluating conditioned velocities in premixed turbulent flames. Combust. Sci. Technol. 183, 588–613 (2011)

    Article  Google Scholar 

  12. Sabelnikov, V.A., Lipatnikov, A.N.: Towards an extension of TFC model of premixed turbulent combustion. Flow Turbulence Combust. 90, 387–400 (2013)

    Article  Google Scholar 

  13. Chen, J.H., Lumley, J.L., Gouldin, F.C.: Modeling of wrinkled laminar flames with intermittency and conditional statistics. Proc. Combust. Inst. 21, 1483–1491 (1986)

    Article  Google Scholar 

  14. Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.: Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478–488 (2004)

    Article  Google Scholar 

  15. Lipatnikov, A.N.: Conditionally averaged balance equations for modeling premixed turbulent combustion in flamelet regime. Combust. Flame 152, 529–547 (2008)

    Article  Google Scholar 

  16. Cho, P., Law, C.K., Cheng, R.K., Shepherd, I.G.: Velocity and scalar fields of turbulent premixed flames in stagnation flow. Proc. Combust. Inst. 22, 739–745 (1988)

    Article  Google Scholar 

  17. Cheng, R.K., Shepherd, I.G.: The influence of burner geometry on premixed turbulent flame propagation. Combust. Flame 85, 7–26 (1991)

    Article  Google Scholar 

  18. Li, S.C., Libby, P.A., Williams, F.A.: Experimental investigation of a premixed flame in an impinging turbulent stream. Proc. Combust. Inst. 25, 1207–1214 (1994)

    Article  Google Scholar 

  19. Stevens, E.J., Bray, K.N.C., Lecordier, B.: Velocity and scalar statistics for premixed turbulent stagnation flames using PIV. Proc. Combust. Inst. 27, 949–955 (1998)

    Article  Google Scholar 

  20. Rutland, C.J., Cant, R.S.: Turbulent transport in premixed flames.. In: Proceedings of 1994 Summer Program, Centre for Turbulence Research, pp 75–94. Stanford University/NASA Ames, Stanford (1994)

  21. Nishiki, S.: DNS and Modeling of Turbulent Premixed Combustion, Ph.D. thesis, Nagoya Institute of Technology (2003)

  22. Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modeling of flame-generated turbulence based on direct numerical simulation databases. Proc. Combust. Inst. 29, 2017–2022 (2002)

    Article  Google Scholar 

  23. Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theory Modell. 10, 39–55 (2006)

    Article  MATH  Google Scholar 

  24. Chakraborty, N., Lipatnikov, A.N.: Conditional velocity statistics for high and low Damköhler number turbulent premixed combustion in the context of Reynolds averaged Navier Stokes simulations. Proc. Combust. Inst. 34, 133–1345 (2013)

    Google Scholar 

  25. Chakraborty, N., Lipatnikov, A.N.: Effects of Lewis number on conditional fluid velocity statistics in low Damköhler number turbulent premixed combustion: A direct numerical simulation analysis. Phys. Fluids 25, 045101 (2013)

    Article  Google Scholar 

  26. Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)

    MATH  Google Scholar 

  27. Swaminathan, N., Bilger, R.W., Ruetsch, G.R.: Interdependence of the instantaneous flame front structure and the overall scalar flux in turbulent premixed flames. Combust. Sci. Technol. 128, 73–97 (1997)

    Article  Google Scholar 

  28. Tullis, S., Cant, R.S.: Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 29, 2097–2105 (2002)

    Article  Google Scholar 

  29. Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)

    Article  MathSciNet  Google Scholar 

  30. Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids, 045103 (2007)

  31. Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. II. Model development. Phys. Fluids 19, 045104 (2007)

    Article  Google Scholar 

  32. Chakraborty, N., Rogerson, J.W., Swaminathan, N.: A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids 20, 045106 (2008)

    Article  Google Scholar 

  33. Chakraborty, N., Katragadda, M., Cant, R.S.: Statistics and modelling of turbulent kinetic energy transport in different regimes of premixed combustion. Flow Turbulence Combust. 87, 205–235 (2011)

    Article  MATH  Google Scholar 

  34. Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Scalar dissipation and mean reaction rates in premixed turbulent combustion. Combust. Flame 158, 2017–2022 (2011)

    Article  Google Scholar 

  35. Chakraborty, N., Lipatnikov, A.N.: Statistics of conditional fluid velocity in the corrugated flamelets regime of turbulent premixed combustion: A Direct Numerical Simulation study. J. Combust. 2011, 628208 (2011)

    Google Scholar 

  36. Mura, A., Robin, V., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theory Modell. 12, 671–698 (2008)

    Article  MATH  Google Scholar 

  37. Mura, A., Robin, V., Champion, M., Hasegawa, T.: Small scale features of velocity and scalar fields in turbulent premixed flames. Flow Turbulence Combust. 82, 339–358 (2009)

    Article  MATH  Google Scholar 

  38. Robin, V., Mura, A., Champion, M., Hasegawa, T.: Direct and indirect thermal expansion effects in turbulent premixed flames. Combust. Sci. Technol. 182, 449–464 (2010)

    Article  Google Scholar 

  39. Robin, V., Mura, A., Champion, M.: Modeling of the effects of thermal expansion on scalar turbulent fluxes in turbulent premixed flames. J. Fluid Mech. 689, 149–182 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lipatnikov, A.N., Chomiak, J., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35. in press, available at doi:10.1016/j.proci.2014.06.081

  41. Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Assessment of a simple model for evaluating turbulent scalar flux in premixed flames against DNS data. In: 6-th European Combustion Meeting, Lund, Sweden, P4–62 (2013)

  42. Pope, S.B.: The evolution of surface in turbulence. Int. J. Engng. Sci. 26, 445–469 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Trouvé, A., Poinsot, T.: Evolution equation for flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  45. Bell, J.B., Day, M.S., Grcar, J.F., Lijewski, M.J.: Active control for statistically stationary turbulent premixed flame simulations. Comm. Appl. Math. Comput. Sci. 1, 29–51 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Poludnenko, A.Y., Oran, E.S.: The interaction of high-speed turbulence with flames: Global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)

    Article  Google Scholar 

  47. Poludnenko, A.Y., Oran, E.S.: The interaction of high-speed turbulence with flames: Turbulent flame speed. Combust. Flame 158, 301–326 (2011)

    Article  Google Scholar 

  48. Lipatnikov, A.N.: Transient behavior of turbulent scalar transport in premixed flames. Flow Turbulence Combust. 86, 609–637 (2011)

    Article  MATH  Google Scholar 

  49. Lipatnikov, A.N., Sabelnikov, V.A.: Transition from countergradient to gradient scalar transport in developing premixed turbulent flames. Flow Turbulence Combust. 90, 401–418 (2013)

    Article  Google Scholar 

  50. Swaminathan, N., Bilger, R.W., Cuenot, B.: Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry. Combust. Flame 126, 1764–1779 (2001)

    Article  Google Scholar 

  51. Zhang, S., Rutland, C.J.: Premixed flame effects on turbulence and pressure related terms. Combust. Flame 102, 447–461 (1995)

    Article  Google Scholar 

  52. Metghalchi, M., Keck, J.C.: Burning velocities of mixtures of air with methanol, iso-octane, and indolene at high pressure and temperature. Combust. Flame 48, 191–210 (1982)

    Article  Google Scholar 

  53. Gülder, Ö.L.: Laminar burning velocities of methanol, ethanol, and isooctane-air mixtures. Proc. Combust. Inst 19, 275–281 (1982)

    Article  Google Scholar 

  54. Müller, U.C., Bollig, M., Peters, N.: Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108, 349–356 (1997)

    Article  Google Scholar 

  55. Marshall, S.P., Taylor, S., Stone, C.R., Davies, T.J., Cracknell, R.F.: Laminar burning velocity measurements of liquid fuels at elevated pressures and temperature with combustion residuals. Combust. Flame 158, 1920–1932 (2011)

    Article  Google Scholar 

  56. Galmiche, B., Halter, F., Foucher, F.: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures. Combust. Flame 159, 3286–3299 (2012)

    Article  Google Scholar 

  57. Enaux, B., Granet, V., Vermorel, O., Lacour, C., Pera, C., Angelberger, C., Poinsot, T.: LES study of cycle-to-cycle variations in a spark ignition engine. Proc. Combust. Inst. 33, 3115–3122 (2011)

    Article  Google Scholar 

  58. Baumann, M., di Mare, F., Janicka, J.: On the validation of LES applied to internal combustion engine flows: Part II: Numerical analysis. Flow Turbulence Combust. 92, 299–317 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lipatnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S. et al. DNS Assessment of a Simple Model for Evaluating Velocity Conditioned to Unburned Gas in Premixed Turbulent Flames. Flow Turbulence Combust 94, 513–526 (2015). https://doi.org/10.1007/s10494-014-9588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9588-7

Keywords

Navigation