Skip to main content
Log in

Towards an Extension of TFC Model of Premixed Turbulent Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In order to determine the mean rate of product creation within the framework of the Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined with a simple closure of turbulent scalar flux developed recently by the present authors based on the flamelet concept of turbulent burning. The model combination is assessed by numerically simulating statistically planar, one-dimensional, developing premixed flames that propagate in frozen turbulence. The mean rate of product creation yielded by the combined model decreases too slowly at the trailing edges of the studied flames, with the effect being more pronounced at longer flame-development times and larger ratios of rms turbulent velocity u′ to laminar flame speed S L . To resolve the problem, the above closure of turbulent scalar flux is modified and the combination of the modified closure and TFC model yields reasonable behaviour of the studied rate. In particular, simulations indicate an increase in the mean combustion progress variable associated with the maximum rate by u′/S L , in line with available DNS data. Finally, the modified closure of turbulent scalar flux is validated by computing conditioned velocities and turbulent scalar fluxes in six impinging-jet flames. The use of the TFC model for simulating such flames is advocated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards, Philadelphia (2005)

    Google Scholar 

  2. Lipatnikov, A.N.: Fundamentals of Premixed Turbulent Combustion. CRC Press (2012)

  3. Prudnikov, A.G.: Burning of homogeneous fuel-air mixtures in a turbulent flow. In: Raushenbakh, B.V. (ed.) Physical Principles of the Working Process in Combustion Chambers of Jet Engines, pp. 244–336. Clearing House for Federal Scientific & Technical Information, Springfield (1967)

  4. Zimont, V.L.: Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds number. Combust. Explos. Shock Waves 15, 305–311 (1979)

    Article  Google Scholar 

  5. Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion. Chem. Phys. Rep. 14, 993–1025 (1995)

    Google Scholar 

  6. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 1–74 (2002)

    Article  Google Scholar 

  7. Bray, K.N.C, Moss, J.B.: A unified statistical model for the premixed turbulent flame. Acta Astronaut. 4, 291–319 (1977)

    Article  Google Scholar 

  8. Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)

    Article  Google Scholar 

  9. Zimont, V.L., Biagioli, F.: Gradient, counter-gradient transport and their transition in turbulent premixed flames. Combust. Theory Model. 6, 79–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biagioli, F. and Zimont, V.L.: Gasdynamics modelling of counter-gradient transport in open and impinging turbulent premixed flames. Proc. Combust. Inst. 29, 2087–2095 (2002)

    Article  Google Scholar 

  11. Sabelnikov, V.A., Lipatnikov, A.N.: A simple model for evaluating conditioned velocities in premixed turbulent flames. Combust. Sci. Technol. 183, 588–613 (2011)

    Article  Google Scholar 

  12. Cho, P., Law, C.K., Cheng, R.K., Shepherd, I.G.: Velocity and scalar fields of turbulent premixed flames in stagnation flow. Proc. Combust. Inst. 22, 739–745 (1988)

    Google Scholar 

  13. Cheng, R.K., Shepherd, I.G.: The influence of burner geometry on premixed turbulent flame propagation. Combust. Flame 85, 7–26 (1991)

    Article  Google Scholar 

  14. Li, S.C., Libby, P.A., Williams, F.A.: Experimental investigation of a premixed flame in an impinging turbulent stream. Proc. Combust. Inst. 25, 1207–1214 (1994)

    Google Scholar 

  15. Stevens, E.J., Bray, K.N.C., Lecordier, B.: Velocity and scalar statistics for premixed turbulent stagnation flames using PIV. Proc. Combust. Inst. 27, 949–955 (1998)

    Google Scholar 

  16. Libby, P.A., Bray, K.N.C.: Countergradient diffusion in premixed turbulent flames. AIAA J. 19, 205–213 (1981)

    Article  Google Scholar 

  17. Lipatnikov, A.N., Chomiak, J.: Self-similarly developing, premixed, turbulent flames: a theoretical study. Phys. Fluids 17, 065105 (2005)

    Article  MathSciNet  Google Scholar 

  18. Libby, P.A.: Theory of normal premixed turbulent flames revisited. Prog. Energy Combust. Sci. 11, 83–96 (1985)

    Article  Google Scholar 

  19. Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.: Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478–488 (2004)

    Article  Google Scholar 

  20. Chakraborty, N., Lipatnikov, A.N.: Statistics of conditional fluid velocity in the corrugated flamelets regime of turbulent premixed combustion: a direct numerical simulation study. J. Combust. 628208 (2011)

  21. Taylor, G.I.: Statistical theory of turbulence. IV. Diffusion in a turbulent air stream. Proc. R. Soc. London A 151, 465–478 (1935)

    Article  Google Scholar 

  22. Veynante, D., Poinsot, T.: Effects of pressure gradients on turbulent premixed flames. J. Fluid Mech. 353, 83–114 (1997)

    Article  MATH  Google Scholar 

  23. Lipatnikov, A.N.: Scalar transport in self-similar, developing, premixed, turbulent flames. Combust. Sci. Technol. 179, 91–115 (2007)

    Article  Google Scholar 

  24. Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, R.S., Kaminski, C.F.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31, 1319–1326 (2007)

    Article  Google Scholar 

  25. Chakraborty, N., Rogerson, J.W., Swaminathan, N.: A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids 20, 045106 (2008)

    Article  Google Scholar 

  26. Han, I., Huh, K.Y.: Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst. 32, 1419–1425 (2009)

    Article  Google Scholar 

  27. Lee, E., Huh, K.Y.: Statistically steady incompressible DNS to validate a new correlation for turbulent burning velocity in turbulent premixed combustion. Flow Turbul. Combust. 84, 339–356 (2010)

    Article  MATH  Google Scholar 

  28. Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)

    Article  MathSciNet  Google Scholar 

  29. Trouvé, A., Poinsot, T.: Evolution equation for flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bray, K.N.C., Champion, M., Libby, P.A.: Premixed flames in stagnating turbulence part V—evaluation of models for the chemical source term. Combust. Flame 127, 2023–2040 (2001)

    Article  Google Scholar 

  31. Lipatnikov, A.N.: Comments on the paper “Premixed Flames in Stagnating Turbulence Part V—Evaluation of Models for the Chemical Source Term” by Bray, K.N.C., Champion, M., and Libby, P.A. Combust. Flame 131, 219–221 (2002)

    Article  Google Scholar 

  32. Lipatnikov, A.N.: A test of conditioned balance equation approach. Proc. Combust. Inst. 33, 1497–1504 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sabelnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabelnikov, V.A., Lipatnikov, A.N. Towards an Extension of TFC Model of Premixed Turbulent Combustion. Flow Turbulence Combust 90, 387–400 (2013). https://doi.org/10.1007/s10494-012-9409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9409-9

Keywords

Mathematics Subject Classifications (2010)

Navigation