Skip to main content
Log in

Killer activity of Saccharomyces cerevisiae strains: partial characterization and strategies to improve the biocontrol efficacy in winemaking

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Killer yeasts are considered potential biocontrol agents to avoid or reduce wine spoilage by undesirable species. In this study two Saccharomyces cerevisiae strains (Cf8 and M12) producing killer toxin were partially characterized and new strategies to improve their activity in winemaking were evaluated. Killer toxins were characterized by biochemical tests and growth inhibition of sensitive yeasts. Also genes encoding killer toxin were detected in the chromosomes of both strains by PCR. Both toxins showed optimal activity and production at conditions used during the wine-making process (pH 3.5 and temperatures of 15–25 °C). In addition, production of both toxins was higher when a nitrogen source was added. To improve killer activity different strategies of inoculation were studied, with the sequential inoculation of killer strains the best combination to control the growth of undesired yeasts. Sequential inoculation of Cf8–M12 showed a 45 % increase of killer activity on sensitive S. cerevisiae and spoilage yeasts. In the presence of ethanol (5–12 %) and SO2 (50 mg/L) the killer activity of both toxins was increased, especially for toxin Cf8. Characteristics of both killer strains support their future application as starter cultures and biocontrol agents to produce wines of controlled quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amberg DC, Burke DJ, Strathern JN (2005) Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual. Cold Spring, Harbor New york

    Google Scholar 

  • Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162

    Article  PubMed  CAS  Google Scholar 

  • Barbosa C, Falco V, Mendes-Faia A, Mendes-Ferreira A (2009) Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J Biosci Bioeng 108:99–104. doi:10.1016/j.jbiosc.2009.02.017

    Article  PubMed  CAS  Google Scholar 

  • Bauer R, Cowan DA, Crouch A (2010) Acrolein in wine: importance of 3-hydroxypropionaldehyde and derivatives in production and detection. J Agr Food Chem 58:3243–3250. doi:10.1021/jf9041112

    Article  CAS  Google Scholar 

  • Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320. doi:10.1016/j.ijfoodmicro.2007.12.023

    Article  PubMed  CAS  Google Scholar 

  • Buzdar MA, Chi Z, Wang Q, Hua MX, Chi ZM (2011) Production, purification and characterization of a novel killer toxin from Kluyveromyces siamensis against a pathogenic yeast in crab. Appl Microbiol Biotechnol 91:1571–1579. doi:10.1007/s00253-011-3220-8

    Article  PubMed  CAS  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241. doi:10.1111/j.1574-6941.2012.01348

    Article  PubMed  CAS  Google Scholar 

  • Ciani M, Fatichenti F (2001) Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl Environ Microbiol 67:3058–3063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ciani M, Mannazzu I, Marinangeli P, Clementi F, Martini A (2004) Contribution of winery-resident Saccharomyces cerevisiae strains to spontaneous grape must fermentation. Antonie Van Leeuwenhoek 85:159–164

    Article  PubMed  CAS  Google Scholar 

  • Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245

    Article  PubMed  CAS  Google Scholar 

  • Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240

    Article  PubMed  CAS  Google Scholar 

  • Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY (1991) Expression in yeast of a cDNA copy of the K2 killer toxin gene. Mol Gen Genet 227:127–136

    Article  PubMed  CAS  Google Scholar 

  • Du Toit WJ, Pretorius IS (2002) The occurrence, control and esoteric effect of acetic acid bacteria in winemaking. Ann Microbiol 52:155–179

    Google Scholar 

  • Esteve-Zarzoso B, Manzanares P, Ramón D, Querol A (1998) The role of non-Saccharomyces yeasts in industrial winemaking. Int Microbiol 1:143–148

    PubMed  CAS  Google Scholar 

  • Fernández de Ullivarri M, Mendoza LM, Raya R, Farías ME (2011) Killer phenotype of indigenous yeasts isolated from wine cellars: potential starter cultures in winemaking from northwest region of Argentina. Biotech Lett 33:2177–2183. doi:10.1007/s10529-011-0674-9

    Article  Google Scholar 

  • Goto K, Iwase T, Kichise K, Kitano K, Totuka A, Obata T, Hara S (1990) Isolation and properties of a chromosome-dependent KHR killer toxin in Saccharomyces cerevisiae. Agric Biol Chem 54:505–509

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez AR, Epifanio S, Garijo P, López R, Santamaría P (2001) Killer yeasts: incidence in the ecology of spontaneous fermentation. Am J Enol Vitic 52:352–356

    Google Scholar 

  • Hua MX, Chi Z, Liu GL, Buzdar MA, Chi ZM (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521. doi:10.1007/s00792-010-0331-6

    Article  PubMed  CAS  Google Scholar 

  • Izgü F, Altınbay D, Acun T (2006) Killer toxin of Pichia anomala NCYC 432; purification, characterization and its exo-β-1,3-glucanase activity. Enzyme Microb Technol 39:669–676

    Article  Google Scholar 

  • Kabir ME, Karim N, Krishnaswamy S, Selvakumar D, Miyamoto M, Furuichi Y, Komiyama T (2011) Peptide derived from anti-idiotypic single-chain antibody is a potent antifungal agent compared to its parent fungicide HM-1 killer toxin peptide. Appl Microbiol Biotechnol 92:1151–1160. doi:10.1007/s00253-011-3412-2

    Article  PubMed  CAS  Google Scholar 

  • Lopes CA, Rodríguez ME, Sangorrín MS, Querol A, Caballero AC (2007) Patagonian wines: the selection of an indigenous yeast starter. J Ind Microbiol Biotechnol 34:539–546

    Article  PubMed  CAS  Google Scholar 

  • Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50

    Article  PubMed  CAS  Google Scholar 

  • Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L (1997) Yeast killer systems. Clin Microbiol Rev 10:369–400

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maqueda M, Zamora E, Álvarez ML, Ramírez M (2012) Characterization, ecological distribution, and population dynamics of Saccharomyces sensu stricto killer yeasts in the spontaneous grape must fermentations of southwestern Spain. Appl Environ Microbiol 78:735–743. doi:10.1128/AEM.06518-11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marks VD, van der Merwe GK, van Vuuren Hennie JJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3:269–287

    Article  PubMed  CAS  Google Scholar 

  • Melvydas V, Serviene E, Cernishova O, Petkuniene O (2007) A novel X factor secreted by yeast inhibits Saccharomyces cerevisiae K1, K2 and K28 killer toxins. Biologija 53:32–35

    CAS  Google Scholar 

  • Mendoza LM, Merín MG, Morata VI, Farías ME (2011) Characterization of wines conducted by mixed culture of autochthonous yeasts and Oenococcus oeni from the Northwest region of Argentina. J Ind Microbiol Biot 38:1777–1785. doi:10.1007/s10295-011-0964-1

    Article  CAS  Google Scholar 

  • Meneghin MC, Reis VR, Ceccato-Antonini SR (2010) Inhibition of bacteria contaminating alcoholic fermentations by killer yeasts. Braz Arch Biol Technol 53:1043–1050

    Article  Google Scholar 

  • Muccilli S, Wemhoff S, Restuccia C, Meinhardt F (2013) Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 30:33–43. doi:10.1002/yea.2935

    Article  PubMed  CAS  Google Scholar 

  • Oliva-Neto P, Ferreira MA, Yokoya F (2004) Screening for yeast with antibacterial properties from an ethanol distillery. Biores Technol 92:1–6

    Article  Google Scholar 

  • Pasteris SE, Strasser de Saad AM (2009) Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine. J Agric Food Chem 57:3853–3858. doi:10.1021/jf803781k

    Article  PubMed  CAS  Google Scholar 

  • Perea S, Gonzalez G, Fothergill AW, Kirkpatrick WR, Rinaldi MG, Patterson TF (2002) In vitro interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp. Antimicrob Agents Ch 46:3039–3041

    Article  CAS  Google Scholar 

  • Perrone B, Giacosa S, Rolle L, Cocolin L, Rantsiou K (2013) Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. Int J Food Microbiol 165:156–162. doi:10.1016/j.ijfoodmicro.2013.04.023

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer I, Golubev WI, Farlas Z, Kucsera J, Golubev N (2004) Mycocin production in Cryptoccocus aquaticus. Anton Leeuw Int J G 86:369–375

    Article  CAS  Google Scholar 

  • Rodríguez-Cousiño N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M (2011) A new wine Saccharomyces cerevisiae double-stranded RNA virus encoded killer toxin (Klus) with broad antifungal activity is evolutionarily related to a chromosomal host gene. Appl Environ Microbiol 77:1822–1832. doi:10.1128/AEM.02501-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangorrín M, Zajonskovsky I, van Broock M, Caballero A (2002) The use of killer biotyping in an ecological survey of yeast in an old Patagonian winery. World J Microb Biotechnol 18:115–120

    Article  Google Scholar 

  • Santos A, Marquina D (2004) Killer toxin of Pichia membranifaciens and its possible use as a biopreservative agent to control grey mould disease of grapevine. Microbiology 150:2527–2534

    Article  PubMed  CAS  Google Scholar 

  • Santos A, San Mauro M, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634. doi:10.1099/mic.0.023663-0

    Article  PubMed  CAS  Google Scholar 

  • Santos A, Navascués E, Bravo E, Marquina D (2011) Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. Int J Food Microbiol 145:147–154. doi:10.1016/j.ijfoodmicro.2010.12.005

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  PubMed  CAS  Google Scholar 

  • Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. J Ind Microbiol Biotechnol 38:1145–1159. doi:10.1007/s10295-011-1018-4

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro D (2013) Partition and partition chromatography of peptides and proteins. In: Li CH (ed) Hormonal proteins and peptides. Academic Press, London, pp 25–107

    Google Scholar 

  • Zagorc T, Maraz A, Cadez N, Povhe Jemec K, Peter G, Resnik M, Nemanik J, Raspor P (2001) Indigenous wine killer yeasts and their application as a starter culture in wine fermentation. Food Microbiol 18:441–451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of Agencia Nacional de Promoción Científica y.

Tecnológica (PICT 2010 N° 0847) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 0320), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía M. Mendoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ullivarri, M.F., Mendoza, L.M. & Raya, R.R. Killer activity of Saccharomyces cerevisiae strains: partial characterization and strategies to improve the biocontrol efficacy in winemaking. Antonie van Leeuwenhoek 106, 865–878 (2014). https://doi.org/10.1007/s10482-014-0256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0256-7

Keywords

Navigation