Skip to main content
Log in

Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Čejková A, Masák J, Jirků V, Veselý M, Pátek M, Nešvera J (2005) Potential of Rhodococcus erythropolis as a bioremediation organism. World J Microbiol Biotechnol 21:317–321

    Article  Google Scholar 

  • D’Antona N, Nicolosi G, Morrone R, Kubáč D, Kaplan O, Martínková L (2010) Synthesis of novel cyano-cyclitols and their stereoselective biotransformation catalyzed by Rhodococcus erythropolis A4. Tetrahedron Asymmetry 21:695–702

    Article  Google Scholar 

  • diGeronimo MJ, Antoine AD (1976) Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21. Appl Env Microbiol 31:900–906

    CAS  Google Scholar 

  • Dykxhoorn DM, St Pierre R, Linn T (1996) A set of compatible tac promoter expression vectors. Gene 177:133–136

    Article  CAS  PubMed  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Fournand D, Bigey F, Arnaud A (1998) Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl Env Microbiol 64:2844–2852

    CAS  Google Scholar 

  • Glanemann C, Loos A, Gorret N, Willis LB et al (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning: a practical approach, vol 1. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Hirrlinger B, Stolz A, Knackmuss HJ (1996) Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J Bacteriol 178:3501–3507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    Article  PubMed  Google Scholar 

  • Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239

    Article  PubMed  Google Scholar 

  • Komeda H, Hori Y, Kobayashi M, Shimizu S (1996) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93:10572–10577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubáč D, Kaplan O, Elišáková V, Pátek M et al (2008) Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. J Mol Catal B Enzym 50:107–113

    Article  Google Scholar 

  • Martínková L, Olšovský P, Přepechalová I, Křen V (1995) Biotransformations of aromatic dinitriles using Rhodococcus equi cells. Biotechnol Lett 17:1219–1222

    Article  Google Scholar 

  • Martínková L, Stolz A, Knackmuss HJ (1996) Enantioselectivity of the nitrile hydratase from Rhodococcus equi A4 towards substituted (R,S)-2-arylpropionitriles. Biotechnol Lett 18:1073–1076

    Article  Google Scholar 

  • Martínková L, Křen V, Cvak L, Ovesná M, Přepechalová I (2000) Hydrolysis of lysergamide to lysergic acid by Rhodococcus equi A4. J Biotechnol 84:63–66

    Article  Google Scholar 

  • Martínková L, Pátek M, Schlosserová AB, Kaplan O, Uhnáková B, Nešvera J (2010) Catabolism of nitriles in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer Verlag, Berlin, pp 171–206

    Google Scholar 

  • Meth-Cohn O, Wang M-X (1997) An in-depth study of the biotransformation of nitriles into amides and/or acids using Rhodococcus rhodochrous AJ270. J Chem Soc Perkin Trans 1(8):1099–1104

    Article  Google Scholar 

  • Nagasawa T, Ryuno K, Yamada H (1986) Nitrile hydratase in Brevibacterium R312. Biochem Biophys Res Commun 139:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T (1991) Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol 173:2465–2472

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek 87:221–232

    Article  PubMed  Google Scholar 

  • Ohtaki A, Murata K, Sato Y, Noguchi K et al (2010) Structure and characterization of amidase from Rhodococcus sp. N-771: insight into the molecular mechanism of substrate recognition. Biochim Biophys Acta 1804:184–192

    Article  CAS  PubMed  Google Scholar 

  • Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B Enzym 24–25:89–98

    Article  Google Scholar 

  • Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–132

    Article  PubMed  Google Scholar 

  • Precigou S, Goulas P, Duran R (2001) Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol Lett 204:155–161

    Article  CAS  PubMed  Google Scholar 

  • Přepechalová I, Martínková L, Stolz A, Ovesná M et al (2001) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Appl Microbiol Biotechnol 55:150–156

    Article  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Treadway SL, Yanagimachi KS, Lankenau E, Lessard PA, Stephanopoulos G, Sinskey AJ (1999) Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51:786–793

    Article  CAS  PubMed  Google Scholar 

  • van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett 205:197–202

    Article  PubMed  Google Scholar 

  • Vejvoda V, Kaplan O, Kubáč D, Křen V, Martínková L (2006) Immobilization of fungal nitrilase and bacterial amidase—two enzymes working in accord. Biocatal Biotrans 24:414–418

    Article  CAS  Google Scholar 

  • Vejvoda V, Šveda O, Kaplan O, Přikrylová V et al (2007) Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases. Biotechnol Lett 29:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Vejvoda V, Martínková L, Veselá AB, Kaplan O et al (2011) Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase–amidase cascade reaction. J Mol Catal B Enzym 71:51–55

    Article  CAS  Google Scholar 

  • Veselá AB, Pelantová H, Šulc M, Macková M et al (2012) Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. J Ind Microbiol Biotechnol 39:1811–1819

    Article  PubMed  Google Scholar 

  • Veselý M, Pátek M, Nešvera J, Čejková A, Masák J, Jirků V (2003) Host-vector system for phenol-degrading Rhodococcus erythropolis based on the Corynebacterium plasmids. Appl Microbiol Biotechnol 61:523–527

    Article  PubMed  Google Scholar 

  • Veselý M, Knoppová M, Nešvera J, Pátek M (2007) Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl Microbiol Biotechnol 76:159–168

    Article  PubMed  Google Scholar 

  • Wang M-X (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35:117–130

    Article  Google Scholar 

  • Winkler M, Martínková L, Knall AC, Krahulec S, Klempier N (2005) Synthesis and microbial transformation of β-amino nitriles. Tetrahedron 61:4249–4260

    Article  CAS  Google Scholar 

  • Wolf LB, Sonke T, Tjen KCMF, Kaptein B, Broxterman QB, Schoemaker HE, Rutjes FPJT (2001) A biocatalytic route to enantiomerically pure unsaturated α-H-α-amino acids. Adv Synth Catal 343:662–674

    Article  CAS  Google Scholar 

  • Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066

    Article  CAS  PubMed  Google Scholar 

  • Zídková L, Szőköl J, Rucká L, Pátek M, Nešvera J (2013) Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains. Int Biodeteriorat Biodegrad 84:179–184

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant LC06010 from the Ministry of Education, Czech Republic, by Grant P504/11/0394 from the Czech Science Foundation and by the institutional research concept RVO 61388971. We thank prof. H. Griengl (Graz University of Technology, Graz, Austria) for kindly providing the cyanohydrins as well as useful advice on their biotransformation and analysis and D. Lukavská for excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nešvera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rucká, L., Volkova, O., Pavlík, A. et al. Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes. Antonie van Leeuwenhoek 105, 1179–1190 (2014). https://doi.org/10.1007/s10482-014-0179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0179-3

Keywords

Navigation