Skip to main content

Advertisement

Log in

Solution algorithms for regional interactions in large-scale integrated assessment models of climate change

  • Energy and Climate Policy Modeling
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We present two solution algorithms for a large-scale integrated assessment model of climate change mitigation: the well known Negishi algorithm and a newly developed Nash algorithm. The algorithms are used to calculate the Pareto-optimum and competitive equilibrium, respectively, for the global model that includes trade in a number of goods as an interaction between regions. We demonstrate that in the absence of externalities both algorithms deliver the same solution. The Nash algorithm is computationally much more effective, and scales more favorably with the number of regions. In the presence of externalities between regions the two solutions differ, which we demonstrate by the inclusion of global spillovers from learning-by-doing in the energy sector. The non-cooperative treatment of the spillover externality in the Nash algorithm leads to a delay in the expansion of renewable energy installations compared to the cooperative solution derived using the Negishi algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Within an iterative sequence (Nordhaus and Yang 1996) compute a closed-loop Nash equilibrium (Fudenberg and Levine 1988). Technically, this is an outcome of a finite game with perfect information and calculated through backward induction (Mas-Colell et al. 1995, Chapter 9; Kicsiny et al. 2014). A survey on Generalized Nash equilibrium problems is provided by Facchinei and Kanzow (2010). Yang (2003) demonstrated how the closed-loop solution can be found by a computationally more tractable sequence of open-loop equilibria.

  2. We solve the model on a high-performance computer cluster equipped with Intel Xeon E5472 CPUs at 3.0 GHz.

References

  • Arrow, K. J., & Hahn, F. H. (1971). General competitive analysis. Mathematical Economic Texts (Vol. 6, p. 452). San Francisco: Oliver and Boyd.

    Google Scholar 

  • Bauer, N., Edenhofer, O., & Kypreos, S. (2008). Linking energy system and macroeconomic growth models. Journal of Computational Management Science, 5, 95–117.

    Article  Google Scholar 

  • Bosetti, V., Carraro, C., Massetti, E., & Tavoni, M. (2006). WITCH A world induced technical change hybrid model. The Energy Journal, 27, (Special Issue: Hybrid modeling of energy-environment policies reconciling bottom-up and top-down), 13–37.

  • Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., & Tavoni, M. (2008). International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization. Energy Economics, 30, 2912–2929.

    Article  Google Scholar 

  • Brechet, T., Camacho, C., & Veliov, V. M. (2014). Model predictive control, the economy, and the issue of global warming. Annals of Operations Research, 220, 25–48.

    Article  Google Scholar 

  • Brooke, A., Kendrick, D., & Meeraus, A. (1992). GAMS—A user’s guide, release 2.25. San Francisco: The Scientific Press.

    Google Scholar 

  • Clarke, L., Jiang, K., et al. (2014). Assessing transformation pathways. In Climate change 2014—Mitigation of climate change, working group III contribution to the fifth assessment report of the intergovernmental panel on climate change, chapter 6.

  • Copeland, B. R., & Taylor, M. S. (2005). Free trade and global warming: A trade theory view of the Kyoto protocol. Journal of Environmental Economics and Management, 49, 205–234.

    Article  Google Scholar 

  • Crassous, R., Hourcade, J.-C., & Sassi, O. (2006). Endogenous structural change and climate targets, modelling experiments with Imaclim-R. The Energy Journal, 27, (Special Issue: Endogenous technological change and the economics of atmospheric stabilisation), 259–276.

  • Dixon, P. B. (1975). The theory of joint maximization. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Drud, A. (1994). CONOPT—A large-scale GRG code. ORSA Journal on Computing, 6, 207–216.

    Article  Google Scholar 

  • Facchinei, F., & Kanzow, C. (2010). Generalized Nash equilibrium problems. Annals of Operations Research, 175, 177–211.

    Article  Google Scholar 

  • Finus, M., Rundshagen, B., & Eyckmans, J. (2014). Simulating a sequential coalition formation process for the climate change problem: First come, but second served? Annals of Operations Research, 220, 5–23.

    Article  Google Scholar 

  • Fudenberg, D., & Levine, K. L. (1988). Open-loop and closed-loop equilibria in dynamic games with many players. Journal of Economic Theory, 44, 1–18.

    Article  Google Scholar 

  • Huebler, M., Baumstark, L., Leimbach, M., Bauer, N., & Edenhofer, O. (2012). An integrated assessment model with endogenous growth. Ecological Economics, 83, 118–131.

    Article  Google Scholar 

  • Kicsiny, R., Varga, Z., & Scarelli, A. (2014). Backward induction for a class of closed-loop Stackelberg games. European Journal of Operational Research, 237, 1021–1036.

    Article  Google Scholar 

  • Leimbach, M., & Baumstark, L. (2010). The impact of capital trade and technological spillovers on climate policies. Ecological Economics, 69, 2341–2355.

    Article  Google Scholar 

  • Leimbach, M., Bauer, N., Baumstark, L., & Edenhofer, O. (2010). Mitigation costs in a globalized world: Climate policy analysis with REMIND-R. Environmental Modeling and Assessment, 15, 155–173.

    Article  Google Scholar 

  • Leimbach, M., Baumstark, L., & Luderer, G. (2015). The role of time prefences in explaining the long-term pattern of international trade. Global Economy Journal, 15, 83–106. doi:10.1515/gej-2014-0035.

    Article  Google Scholar 

  • Luderer, G., Leimbach, M., Bauer, N., Kriegler, E., Baumstark, L., Bertram, C., Giannousakis, A., Hilaire, J., Klein, D., Levesque, A., Mouratiadou, I., Pehl, M., Pietzcker, R., Piontek, F., Roming, N., Schultes, A., Schwanitz, V. J., & Strefler, J. (2015). Description of the REMIND Model (Version 1.6) (November 30, 2015). Available at SSRN: http://ssrn.com/abstract=2697070

  • Magne, B., Kypreos, S., & Turton, H. (2010). Technology options for low stabilization pathways with MERGE. The Energy Journal, 31, 83–107.

  • Mandel, A., & Gintis, H. (2016). Decentralized Pricing and the equivalence between Nash and Walrasian equilibrium. Journal of Mathematical Economics, 63, 84–92.

    Article  Google Scholar 

  • Manne, A. S., Mendelsohn, M., & Richels, R. (1995). MERGE—A model for evaluating regional and global effects of GHG reduction policies. Energy Policy, 23, 17–34.

    Article  Google Scholar 

  • Manne, A. S., & Richels, R. (2004). The impact of learning-by-doing on the timing and costs of CO\(_2\) abatement. Energy Economics, 26, 603–619.

    Article  Google Scholar 

  • Manne, A. S., & Rutherford, T. (1994). International trade, capital flows and sectoral analysis: Formulation and solution of intertemporal equilibrium models. In W. W. Cooper & A. B. Whinston (Eds.), New directions in computational economics (pp. 191–205). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New York: Oxford University Press.

    Google Scholar 

  • Meinshausen, M., Raper, S. C. B., & Wigley, T. M. L. (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6. Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11, 1417–1456. doi:10.5194/acp-11-1417-2011.

    Article  Google Scholar 

  • Messner, S., & Schrattenholzer, L. (2000). MESSAGE-MACRO: Linking an energy supply sodel with a macroeconomic module and solving it iteratively. Energy, 25, 267–282.

    Article  Google Scholar 

  • Negishi, T. (1972). General equilibrium theory and international trade. Amsterdam: North-Holland.

    Google Scholar 

  • Nordhaus, W. D., & Boyer, J. (2000). Warming the world: Economic models of global warming. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nordhaus, W. D., & Yang, Z. (1996). A regional dynamic general-equilibrium model of alternative climate-change strategies. American Economic Review, 86, 741–765.

    Google Scholar 

  • Pan, V. (1992). Complexity of computation with matrices and polynomials. SIAM Review, 34, 225–262.

    Article  Google Scholar 

  • Rao, S., Peppo, I., & Riahi, K. (2006). Importance of technological change and spillovers in long-term climate policy. The Energy Journal, 27, (Special Issue: Endogenous technological change and the economics of atmospheric stabilisation), 123–139.

  • Rogelj, J., Hare, W., Lowe, J., van Vuuren, D. P., et al. (2011). Emission pathways consistent with a \(2\,^{\circ } \text{ C }\) global temperature limit. Nature Climate Change, 1, 413–418.

    Article  Google Scholar 

  • Scarf, H. (1967). On the computation of equilibrium prices. In W. Fellner (Ed.), Ten economic studies in the tradition of irving fisher (pp. 207–230). New York: Wiley.

    Google Scholar 

  • Yang, Z. (2003). Reevaluation and renegotation of climate change coalitions—A sequential closed-loop game. Journal of Economic Dynamics & Control, 27, 1563–1594.

  • Weber, C. L., & Peters, G. P. (2009). Climate change policy and international trade: Policy considerations in the US. Energy Policy, 37, 432–440.

  • Weyant, J., Davidson, O., Dowlabathi, H., Edmonds, J., Grubb, M., Parson, E. A., et al. (1996). Integrated assessment of climate change: An overview and comparison of approaches and results. In J. P. Bruce, et al. (Eds.), Climate change 1995: Economic and social dimensions of climate change (pp. 367–439). Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

Funding from the German Federal Ministry of Education and Research (BMBF) in the Call Economics of Climate Change (funding code  01LA1105A CliPoN) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Leimbach.

Additional information

Marian Leimbach and Anselm Schultes have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leimbach, M., Schultes, A., Baumstark, L. et al. Solution algorithms for regional interactions in large-scale integrated assessment models of climate change. Ann Oper Res 255, 29–45 (2017). https://doi.org/10.1007/s10479-016-2340-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2340-z

Keywords

Navigation