Skip to main content
Log in

Strong polynomiality of the Gass-Saaty shadow-vertex pivoting rule for controlled random walks

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the subclass of linear programs that formulate Markov Decision Processes (mdps). We show that the Simplex algorithm with the Gass-Saaty shadow-vertex pivoting rule is strongly polynomial for a subclass of mdps, called controlled random walks (CRWs); the running time is O(|S|3⋅|U|2), where |S| denotes the number of states and |U| denotes the number of actions per state. This result improves the running time of Zadorojniy et al. (Mathematics of Operations Research 34(4):992–1007, 2009) algorithm by a factor of |S|. In particular, the number of iterations needed by the Simplex algorithm for CRWs is linear in the number of states and does not depend on the discount factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1

Similar content being viewed by others

References

  • Amenta, N., & Ziegler, G. M. (1996). Advances in discrete and computational geometry. In Contemporary mathematics: Vol. 223. Deformed products and maximal shadows of polytopes. Providence: Am. Math. Soc.

    Google Scholar 

  • Barasz, M., & Vempala, S. (2010). A new approach to strongly polynomial linear programming. In Innovations in computer science (pp. 42–48).

    Google Scholar 

  • Borgwardt, K. H. (1982a). The average number of pivot steps required by the simplex-method is polynomial. Mathematical Methods of Operations Research, 26(1), 157–177.

    Article  Google Scholar 

  • Borgwardt, K. H. (1982). Some distribution-independent results about the asymptotic order of the average number of pivot steps of the simplex method. Mathematics of Operations Research, 7(3), 441–462.

    Article  Google Scholar 

  • de Ghellinck, G. (1960). Les problemes de decisions sequentielles. Cahiers Du Centre D’études de Recherche Opérationnelle, 2, 161–179.

    Google Scholar 

  • d’Epenoux, F. (1963). A probabilistic production and inventory problem. Management Science, 10(1), 98–108.

    Article  Google Scholar 

  • Derman, C. (1962). On sequential decisions and markov chains. Management Science, 9(1), 16–24.

    Article  Google Scholar 

  • Gass, S., & Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly, 2(1–2), 39–45.

    Article  Google Scholar 

  • Kitaev, M. Y., & Rykov, V. V. (1995). Controlled queueing systems. Boca Raton: CRC Press.

    Google Scholar 

  • Kleinrock, L. (1975). Queueing systems, Vol. I: Theory. New York: Wiley.

    Google Scholar 

  • Manne, A. S. (1960). Linear programming and sequential decisions. Management Science, 6(3), 259–267.

    Article  Google Scholar 

  • Matoušek, J., & Gärtner, B. (2007). Understanding and using linear programming. Berlin: Springer.

    Google Scholar 

  • Megiddo, N. (1984). Linear programming in linear time when the dimension is fixed. Journal of the ACM, 31(1), 114–127.

    Article  Google Scholar 

  • Megiddo, N. (1987). On the complexity of linear programming. In T. Bewley (Ed.), Advances in economic theory: fifth world congress (pp. 225–268). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Megiddo, N., & Chandrasekaran, R. (1989). On the ε-perturbation method for avoiding degeneracy. Operations Research Letters, 8(6), 305–308.

    Article  Google Scholar 

  • Meyn, S. P. (2008). Control techniques for complex networks. Cambridge: Cambridge University Press.

    Google Scholar 

  • Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic programming. New York: Wiley.

    Google Scholar 

  • Schrijver, A. (1998). Theory of linear and integer programming. New York: Wiley.

    Google Scholar 

  • Serfozo, R. F. (1979). An equivalence between continuous and discrete time markov decision processes. Operations Research, 27(3), 616–620.

    Article  Google Scholar 

  • Spielman, D. A., & Teng, S. H. (2004). Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3), 385–463.

    Article  Google Scholar 

  • Tardos, E. (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3), 247–255.

    Article  Google Scholar 

  • Tardos, E. (1986). A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research, 34(2), 250–256.

    Article  Google Scholar 

  • Terlaky, T., & Zhang, S. (1993). Pivot rules for linear programming: a survey on recent theoretical developments. Annals of Operations Research, 46(1), 203–233.

    Article  Google Scholar 

  • Vershynin, R. (2006). Beyond Hirsch conjecture: walks on random polytopes and smoothed complexity of the simplex method. In FOCS’06. 47th annual IEEE symposium on foundations of computer science, 2006 (pp. 133–142). New York: IEEE Press.

    Chapter  Google Scholar 

  • Yadin, M., & Naor, P. (1967). On queueing systems with variable service capacities. Naval Research Logistics Quarterly, 14, 43–53.

    Article  Google Scholar 

  • Ye, Y. (2005). A new complexity result on solving the Markov decision problem. Mathematics of Operations Research, 30(3), 733–749.

    Article  Google Scholar 

  • Ye, Y. (2010). The simplex and policy-iteration methods are strongly polynomial for the Markov decision problem with a fixed discount rate. Seminar, talk.

  • Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial for the Markov decision problem with a fixed discount rate. Mathematics of Operations Research, 36(4), 593–603.

    Article  Google Scholar 

  • Zadorojniy, A., & Even, G. Hyperbolic behavior of occupation measures between neighboring policies in CMDPs. http://www.eng.tau.ac.il/~sasha/.

  • Zadorojniy, A., Even, G., & Shwartz, A. (2009). A strongly polynomial algorithm for controlled queues. Mathematics of Operations Research, 34(4), 992–1007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zadorojniy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Even, G., Zadorojniy, A. Strong polynomiality of the Gass-Saaty shadow-vertex pivoting rule for controlled random walks. Ann Oper Res 201, 159–167 (2012). https://doi.org/10.1007/s10479-012-1199-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1199-x

Keywords

Navigation