Skip to main content
Log in

Analysis and design of power and efficiency in third-order matching networks for switched-capacitor power-amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design of a matching network (MN) for switched-capacitor PAs (SCPA) optimized for efficiency against required load output power. The presented third-order MN exploits the intrinsic output capacitance of the SCPA, reducing the number of passive components required by the MN. As an example, a MN for a 1.1 V switched capacitor power amplifier has been designed with a bluetooth application in mind. The example MN has been implemented in a 28 nm CMOS RF metal stack and provides 16.7 dBm output power with IL = 1.1 dB at 2.4 GHz in an area of 300 × 300 μm2 when resonated by an SCPA capacitance of 2.3 pF. Further structures have then been implemented and characterized, covering a broader set of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(L_p\), once \(P_o\) and n are given, is in fact implicitly given by (10).

References

  1. Aoki, I., Kee, S., Rutledge, D., & Hajimiri, A. (2002). Distributed active transformer—A new power-combining and impedance-transformation technique. IEEE Transactions on Microwave Theory and Techniques, 50(1), 316–331. doi:10.1109/22.981284.

    Article  Google Scholar 

  2. Baker, R. (2011). CMOS: Circuit design, layout, and simulation., IEEE press series on microelectronic systems Hoboken: Wiley.

    Google Scholar 

  3. Boos, Z., Menkhoff, A., Kuttner, F., Schimper, M., Moreira, J., Geltinger, H., Gossmann, T., Pfann, P., Belitzer, A., & Bauernfeind, T. (2011). A fully digital multimode polar transmitter employing 17b RF DAC in 3G mode. In 2011 IEEE international solid-state circuits conference digest of technical papers (ISSCC) (pp. 376–378). doi:10.1109/ISSCC.2011.5746361.

  4. Eisener, B., Buyuktas, K., Rugemer, A., Kebinger, H., & Herzum, C. (2003). Monolithic, integrated high-Q inductors for RF applications. In Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2003 (pp. 107–110). doi:10.1109/SMIC.2003.1196681.

  5. Jin, H., Kim, D., Jin, S., Lee, H., Moon, K., Kim, H., & Kim, B. (2015). Efficient digital quadrature transmitter based on IQ cell sharing. In 2015 IEEE international solid-state circuits conference—(ISSCC) (pp. 1–3). doi:10.1109/ISSCC.2015.7062979.

  6. Mohan, S., del Mar Hershenson, M., Boyd, S., & Lee, T. (1999). Simple accurate expressions for planar spiral inductances. IEEE Journal of Solid-State Circuits, 34(10), 1419–1424. doi:10.1109/4.792620.

    Article  Google Scholar 

  7. Passamani, A., Ponton, D., Knoblinger, G., & Bevilacqua, A. (2014). A linear model of efficiency for switched-capacitor RF power-amplifiers. In 10th conference on Ph.D. research in microelectronics and electronics (PRIME), 2014 (pp. 1–4). doi:10.1109/PRIME.2014.6872748.

  8. Passamani, A., Ponton, D., Knoblinger, G., & Bevilacqua, A. (2015). Analysis and design of a 1.1 dB-IL third-order matching network for switched-capacitor PAs. In Nordic circuits and systems conference (NORCAS): NORCHIP international symposium on system-on-chip (SoC), 2015 (pp. 1–4). doi:10.1109/NORCHIP.2015.7364367.

  9. Solda, S., Caruso, M., Bevilacqua, A., Gerosa, A., Vogrig, D., & Neviani, A. (2011). A 5 Mb/s UWB-IR transceiver front-end for wireless sensor networks in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 46(7), 1636–1647. doi:10.1109/JSSC.2011.2144070.

    Article  Google Scholar 

  10. Stauth, J., & Sanders, S. (2008). A 2.4 GHz, 20 dBm class-D PA with single-bit digital polar modulation in 90 nm CMOS. In Custom integrated circuits conference, 2008. CICC 2008 (pp. 737–740). IEEE. doi:10.1109/cicc.2008.4672193.

  11. Yoo, S. M., Walling, J., Degani, O., Jann, B., Sadhwani, R., Rudell, J., et al. (2013). A class-G switched-capacitor RF power amplifier. IEEE Journal of Solid-State Circuits, 48(5), 1212–1224. doi:10.1109/JSSC.2013.2252754.

    Article  Google Scholar 

  12. Yoo, S. M., Walling, J., Woo, E. C., Jann, B., & Allstot, D. (2011). A switched-capacitor RF power amplifier. IEEE Journal of Solid-State Circuits, 46(12), 2977–2987. doi:10.1109/JSSC.2011.2163469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Passamani.

Appendix

Appendix

Primary and secondary currents in the T-model of the transformer have ratio

$$\begin{aligned} \dfrac{I_1}{I_2} = \dfrac{\dfrac{R_2+R+j \omega L_2 }{n ^2}}{j \omega L_m } \end{aligned}$$
(19)

and thus,

$$\begin{aligned} \eta= & {} \dfrac{P_o}{P_o + P_{R_2} + P_{R_1}} \nonumber \\= & {} \dfrac{|I_2|^2 \cdot \dfrac{R}{ n^2}}{|I_2|^2 \cdot \dfrac{ R + R_2}{ n^2} + |I_1 + I_2|^2 \cdot R_1}\nonumber \\= & {} \dfrac{\dfrac{R}{ n^2}}{\dfrac{R + R_2}{n^2} + \left| \dfrac{R + R_2 +j \omega L_2 + j \omega L_m n^2}{j \omega L_m n^2}\right| ^2 \cdot R_1 } \end{aligned}$$
(20)

Furthermore, exploiting the fact that

$$\begin{aligned} \eta&= \dfrac{P_o}{P_i} = \left| \dfrac{I_2}{I_1 + I_2} \right| ^2 \dfrac{ R}{n^2 (Z + 1 / j\omega C)} \end{aligned}$$
(21)

where \((Z + 1 / j\omega C)\) is the impedance of the whole matching network, the output power is found to be,

$$\begin{aligned} P_o&= \eta \dfrac{V^2}{(Z + 1 / j\omega C)} = \dfrac{ \eta ^2 n^2 V ^2}{R} \left| \dfrac{I_1 + I_2}{I_2} \right| ^2 \end{aligned}$$
(22)

Finally point of maximum efficiency can the be found by zeroing the derivative (4) with respect to \(\omega L_p\)

$$\begin{aligned} \frac{\partial \eta }{\partial \omega L_p}&= - (\omega L_p)^2 n ^ 4 \left( \dfrac{k^2 }{Q_2} + \dfrac{1}{Q_1 Q_2^2} + \dfrac{1}{Q_1} \right) + \dfrac{ R^2}{n^2 Q_1} \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passamani, A., Ponton, D., Knoblinger, G. et al. Analysis and design of power and efficiency in third-order matching networks for switched-capacitor power-amplifiers. Analog Integr Circ Sig Process 89, 307–315 (2016). https://doi.org/10.1007/s10470-016-0801-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0801-6

Keywords

Navigation