Skip to main content
Log in

A W-Band Transformer-Based Power Amplifier with Anti-Pair Capacitors in 0.13-μm SiGe BiCMOS

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a W-band three-stage amplifier using 0.13-μm SiGe BiCMOS process, which is implemented with transformers for inter-stage matching and single-to-differential transformation. However, for balun operation, conventional transformer exhibits imbalance characteristic resulting from the complex parasitic effects arising in the millimeter-wave frequency range. An anti-pair capacitor structure is devised and applied to improve amplitude and phase balance and further benefit the RF performance. A two-way transformer-based parallel combiner embedded with several co-optimizing elements is designed to implement power combining and optimum load impedance matching. The amplifier achieves a peak gain of 28.2 dB at 93 GHz, with a 3-dB bandwidth from 85 to 96 GHz. The measured saturated output power (Psat) and maximum power added efficiency (PAE) at 94 GHz are 14.1 dBm and 9.2%, respectively. The power amplifier with only 0.6-mm2 area exhibits excellent gain and maintains competitive output power and PAE in W-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Z.-J Hou, Y. Yang, L. Chiu, X. Zhu, E. Dutkiewicz, J. C. Vardaxoglou and Q. Xue, “A W-Band Balanced Power Amplifier Using Broadside Coupled Strip-Line Coupler in SiGe BiCMOS 0.13-μm Technology,” IEEE Transactions On Circuits And Systems—I: Regular Papers, vol. 65, no. 7, pp. 2139–2150, Jul. 2018.

  2. M. Chang and G. M. Rebeiz, "A Wideband High-Efficiency 79–97 GHz SiGe Linear Power Amplifier With >90 mW Output," IEEE Bipolar/BiCMOS Circ. and Tech. Meeting (BCTM), Oct. 2008.

  3. P. Song, A. C. Ulusoy, R. L. Schmid, S. N. Zeinolabedinzadeh, and J. D. Cressler, “W-band SiGe power amplifiers,” in IEEE Bipolar/ BiCMOS Circuits Technol. Meeting, Sep. 2014, pp. 151–154.

  4. P. Song et al., “A Class-E Tuned W-band SiGe Power Amplifier With 40.4% Power-Added Efficiency at 93 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 663–665, Oct. 2015.

  5. Y. Atesal, B. Cetinoneri, M. Chang, R. Alhalabi, and G. M. Rebeiz, “Millimeter-Wave Wafer-Scale Silicon BiCMOS Power Amplifiers Using Free-Space Power Combining,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 645–655, Apr. 2011

  6. Y-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C. Kao and H. Wang, “Millimeter-Wave CMOS Power Amplifiers with high output power and wideband performances,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4520–4533, Dec. 2013.

  7. K. Wu, K. Lai, R. Hu, C. F. Jou, D. Niu, and Y. Shiao, “77–110 GHz 65 nm CMOS Power Amplifier Design,” IEEE Trans. Tera. Scien. Techn., vol. 4, no. 3, pp. 391–399, May 2014.

  8. H. C. Lin and G. M. Rebeiz. “A 110–134-GHz SiGe Amplifier With Peak Output Power of 100–120 mW.” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 2990–3000, Dec. 2014.

  9. C. R. Chappidi and K. Sengupta. “A W-band SiGe power amplifier with Psat of 23 dBm and PAE of 16.8% at 95GHz,” in IEEE MTT-S Int. Microw. Symp., Jun. 2017, pp. 1699–1702.

  10. A.-K. Chen and J. Lin, “An 83-GHz High-Gain SiGe BiCMOS Power Amplifier Using Transmission-Line Current Combining Technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1557–1569, Apr. 2013.

  11. D. Sandstrom, B. Martineau, M. Varonen, M. Karkkainen, A. Cathelin, and K. Halonen, “94 GHz Power-Combining Power Amplifier With 13 dBm Saturated Output power in 65 nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2011, pp. 1–4

  12. Y. Zhao and J. Long, “A Wideband, Dual-Path, Millimeter-Wave Power Amplifier With 20 dBm Output Power and PAE Above 15% in 130 nm SiGe-BiCMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 1981–1997, Sep. 2012

  13. Q. Gu, Z. Xu, and M. C. F. Chang, “Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1365–1374, May 2012.

  14. D. Zhao and P. Reynaert, “A 40-nm CMOS E-band 4-Way Power Amplifier With Neutralized Bootstrapped Cascode Amplifier and Optimum Passive Circuits,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4083–4089, Dec. 2015.

  15. D. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 683–690, Feb. 2015

  16. H. S. Son, J. Y. Jang, D. M. Kang, H. J. Lee and C. S. Park, “A 109 GHz CMOS Power Amplifier With 15.2 dBm Psat and 20.3 dB Gain in 65- nm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 510–512, Jul. 2016.

  17. D. Hou, Y.-Z Xiong, W.-L. Goh, W. Hong and M. Madihian, “A D-Band Cascode Amplifier With 24.3 dB Gain and 7.7 dBm Output Power in 0.13μm SiGe BiCMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 22 no. 4, pp. 191–193, Apr. 2012.

  18. M. Rickelt, H. Rein, and E. Rose, “Influence of Impact-Ionization-Induced Instabilities on The Maximum Usable Output Voltage of Si-Bipolar Transistors,” IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 774–783,Apr. 2001.

  19. C.-F. Chou, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, C.-W. Wu, and H. Wang, “Design of a V-band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4545–4560, Dec. 2016.

  20. D. Chowdhury, P. Reynaert, and A. M. Niknejad, “Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2733–2744, Oct. 2009.

  21. D. Hou et al., “Distributed Modeling of Six-Port Transformer for Millimeter-Wave SiGe BiCMOS Circuits Design,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 3728–3738, Dec. 2012.

  22. K. Wu, S. Muralidharan, and M. M. Hella, “A Wideband SiGe BiCMOS Frequency Doubler With 6.5-dBm Peak Output Power for Millimeter-Wave Signal Sources,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 187–200, Jan. 2018.

  23. Y. Yu et al., “A 60-GHz 19.8-mW current-reuse active phase shifter with tunable current-splitting technique in 90-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 5, pp. 1572–1584, May 2016

  24. S. Y. Kim, D.-W. Kang, K.-J. Koh, and G. M. Rebeiz, “An improved wideband all-pass I/Q network for millimeter-wave phase shifters,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3431–3439, Nov. 2012.

  25. Y. Sun, G. G. Fischer, and J. C. Scheytt, “A Compact Linear 60- GHz PA With 29.2% PAE Operating at Weak Avalanche Area in SiGe,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2581–2589, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank MISIC Microelectronics, Nanjing, China, for supporting the chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixin Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, J., Hou, D. et al. A W-Band Transformer-Based Power Amplifier with Anti-Pair Capacitors in 0.13-μm SiGe BiCMOS. J Infrared Milli Terahz Waves 40, 822–837 (2019). https://doi.org/10.1007/s10762-019-00606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00606-z

Keywords

Navigation