Skip to main content
Log in

Transconductance enhancement in bulk-driven input stages and its applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Two different circuit techniques to enhance the effective transconductance of a CMOS bulk-driven differential input stage are presented in this paper. Both approaches rely on a partial positive feedback, which leads to improved values for the DC gain and the gain-bandwidth product. The operation principle of the first solution is based on modifying the effective conductance of the active load of the input stage, while the second method acts directly on the input differential pair. The suitability of the presented techniques is demonstrated by the design of operational transconductance amplifiers operating at two different supply voltages, i.e., 2.4 and 1.0 V. Besides, the overall design of two applications, namely a 3 V input/output rail-to-rail operational amplifier with high linearity and a 1.2 V second-order OTA-C low-pass filter, is addressed. Simulated results obtained in standard 0.35 μm CMOS technology demonstrate the applicability of the solutions introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huijsing, J. H., & Linebarger, D. (1985). Low-voltage operational amplifier with rail-to-rail input and output ranges. IEEE Journal of Solid-State Circuits, 20(12), 1144–1150.

    Article  Google Scholar 

  2. Redman-White, W. (1997). A high bandwidth constant-g m and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low voltage VLSI systems. IEEE Journal of Solid-State Circuits, 32(5), 701–712.

    Article  Google Scholar 

  3. Carrillo, J. M., Duque-Carrillo, J. F., Torelli, G., & Ausín, J. L. (2003). Constant-gm constant-slew-rate high-bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 38(8), 1364–1372.

    Article  Google Scholar 

  4. Song, T., Hu, J., Li, X., & Yan, S. (2007). A constant-g m constant-slew-rate rail-to-rail input stage with static feedback and dynamic current steering for VLSI cell libraries. IEEE Transactions on Circuits and Systems II, 54(1), 76–80.

    Article  Google Scholar 

  5. Duisters, T. A. F., & Dijkmans, E. C. (1998). A-90-dB THD rail-to-rail input opamp using a new local charge pump in CMOS. IEEE Journal of Solid-State Circuits, 33(7), 947–955.

    Article  Google Scholar 

  6. Fonderie, J., Maris, M. M., Schnitger, E. J., & Huijsing, H. (1989). 1-V operational amplifier with rail-to-rail input and output ranges. IEEE Journal of Solid-State Circuits, 24(12), 1551–1559.

    Article  Google Scholar 

  7. Duque-Carrillo, J. F., Ausín, J. L., Torelli, G., Valverde, J. M., & Domínguez, M. A. (2000). 1-V rail-to-rail operational amplifiers in standard CMOS technology. IEEE Journal of Solid-State Circuits, 35(1), 33–44.

    Article  Google Scholar 

  8. Guzinski, A., Bialko, M., & Matheau, J. (1987). Body driven differential amplifier for application in continuous-time active-C filter. In European conference on circuit theory and design (pp. 315–319).

  9. Blalock, B. J., & Allen, P. E. (1995). A low-voltage bulk-driven MOSFET current mirror for CMOS technology. In IEEE international symposium on circuits and systems (Vol. 3, pp. 1972–1975).

  10. Jiang, Y., & Raut, R. (1997). A low-voltage low-power voltage-to-current transconductor using bulk-driven CMOS transistors. In 5th international conference on VLSI and CAD (pp. 451–453).

  11. Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V op amps using standard digital CMOS technology. IEEE Transactions on Circuits Systems II, 45(7), 769–780.

    Article  Google Scholar 

  12. Chatterjee, S., Tsividis, Y., & Kinget, P. (2005). 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE Journal of Solid-State Circuits, 40(12), 2373–2387.

    Article  Google Scholar 

  13. Pun, K.-P., Chatterjee, S., & Kinget, P. R. (2007). A 0.5-V 74-dB SNDR 25-kHz continuous-time sigma-delta modulator with return-to-open DAC. IEEE Journal of Solid-State Circuits, 42(3), 496–507.

    Article  Google Scholar 

  14. Carrillo, J. M., Torelli, G., Pérez-Aloe, R., & Duque-Carrillo, J. F. (2007). 1-V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE Journal of Solid-State Circuits, 42(3), 508–517.

    Article  Google Scholar 

  15. Carrillo, J. M., Torelli, G., & Duque-Carrillo, J. F. (2008). Transconductance enhancement in bulk-driven input stages. In IEEE international conference on electronics, circuits and systems (Vol. 1, pp. 13–16).

  16. Carrillo, J. M., Torelli, G., Domínguez, M. A., & Duque-Carrillo, J. F (2011). On the input common-mode voltage range of CMOS bulk-driven input stages. International Journal of Circuit Theory and Applications (in press).

  17. Sarpeshkar, R., Lyon, R. F., & Mead, C. (1997). A low-power wide-linear-range transconductance amplifier. Analog Integrated Circuits & Signal Processing, 13(5), 123–151.

    Article  Google Scholar 

  18. Sarpeshkar, R., Lyon, R. F., & Mead, C. (1998). A low-power wide-dynamic-range analog VLSI cochlea. Analog Integrated Circuits & Signal Processing, 16(8), 245–274.

    Article  Google Scholar 

  19. Veeravalli, A., Sánchez-Sinencio, E., & Silva-Martínez, J. (2002). Transconductance amplifier structures with very small transconductances: A comparative design approach. IEEE Journal of Solid-State Circuits, 37(6), 770–775.

    Article  Google Scholar 

  20. Allstot, D. J. (1982). A precision variable-supply CMOS comparator. IEEE Journal of Solid-State Circuits, 17(12), 1080–1087.

    Article  Google Scholar 

  21. Castello, R., Grassi, A. G., & Donati, S. (1990). A 500-nA sixth-order bandpass SC filter. IEEE Journal of Solid-State Circuits, 25(6), 669–676.

    Article  Google Scholar 

  22. Wang, R., & Harjani, R. (1995). Partial positive feedback for gain enhancement of low-power CMOS OTAs. Analog Integrated Circuits & Signal Processing, 8(7), 21–35.

    Article  Google Scholar 

  23. Hogervorst, R., & Huijsing, J. H. (1996). Design of low-voltage, low power operational amplifier cells. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Dirección General de Universidades of the Spanish Ministerio de Educación y Ciencia under Grant PR2007-0509 and by Junta de Extremadura and FEDER under Grant PRI09A080. The authors wish to thank all the members of the Integrated Microsystems Laboratory of the University of Pavia (Italy) for their help and all the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Carrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, J.M., Torelli, G. & Duque-Carrillo, J.F. Transconductance enhancement in bulk-driven input stages and its applications. Analog Integr Circ Sig Process 68, 207–217 (2011). https://doi.org/10.1007/s10470-011-9603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9603-z

Keywords

Navigation