Skip to main content

BCD Process Technologies

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Abstract

This chapter provides an overview of BCD (Bipolar CMOS DMOS) process technologies which are devoted to realize smart power ICs for different applications in the automotive, industrial, computer peripherals, and personal electronics domains.

After an initial overview of the possible isolation schemes and their reflection on the BCD platform differentiation, a description of the BCD technology architecture, compared to more standard CMOS processes, is presented.

Focus is then given on the technology enablers which are driving the innovation in order to meet the evolution of the applications.

The increase of digital processing capability and the need for embedded nonvolatile memories enabled by the minimum lithography reduction and by new emerging memory technologies are first discussed.

Then the requirements for more efficient and robust high voltage and high current power stages and the demands coming from analog functions are described showing power component architectures and innovations in the metal and dielectric layers which need to withstand very high currents and thermomechanical stresses.

The section on new technology enablers ends up with the presentation of passive modules to address specific analog and high voltage applications.

Finally, the future trends and challenges for BCD technology development are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murari, B., Bertotti, F., Vignola, G.A. (eds.): Smart Power ICs. Springer-Verlag, Berlin Heidelberg (1996)

    Google Scholar 

  2. Rudolf, R., Wagner, C., O’Riain, L., Gebhardt, K-H. Kuhn-Heinrich, B., von Ehrenwall, B., von Ehrenwall, A., Marc Strasser, M., Stecher, U., Glaser, S., Aresu, P., Kuepper, A., Mayerhofer: Automotive 130 nm Smart-Power-Technology including embedded Flash Functionality, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2011)

    Google Scholar 

  3. Charavel, R., Roig, J., Mouhoubi, S., Gassot, P., Bauwens, F., Vanmeerbeek, P., Desoete, B., Moens, P., De Backer, E.: Next generation of deep trench isolation for smart power technologies with 120 V high-voltage devices. Microelectron. Reliab. 50, 1758–1762 (2010)

    Article  Google Scholar 

  4. Fujii, H., Tokumitsu, S., Mori, T., Yamashita, T., Maruyama, T., Maruyama, T., Y. Maruyama, S. Nishimoto, H. Arie, S. Kubo and T. Ipposhi: A 90nm bulk BiCDMOS platform technology with 15-80V LD-MOSFETs for automotive applications, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2017)

    Google Scholar 

  5. Nouri, F., Laparra, O., Sur, H., Tai, G.C., Pramanik, D., Manley, M.: A manufacturable shallow trench isolation process for 0.18 μm and beyond optimization, stress reduction and electrical performance, IEEE/SEMI Advanced Semiconductor Manufacturing Conference ( 1998)

    Google Scholar 

  6. Appels, J.A., Vaes, H.M.J.: High voltage thin layers devices, International Electron Devices Meeting (IEDM) (1979)

    Google Scholar 

  7. Grasser, T. (ed.): Bias Temperature Instability for Devices and Circuits. Springer, New York (2014)

    Google Scholar 

  8. Andreini, A., Contiero, C., Galbiati, P.: A new integrated silicon gate technology combining bipolar linear, CMOS logic and DMOS power parts. IEEE Trans. Elect. Dev. ED-33(12), 2025–2030 (1996)

    Article  Google Scholar 

  9. Contiero, C., Galbiati, P., Palmieri, M., Vecchi, L.: LDMOS implementation by large tilt implant in 0.6μm BCD5 process FLASH memory compatible, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (1996)

    Google Scholar 

  10. Efland, T.R., Tsai, C.-Y., Pendharkar, S.: Lateral Thinking About Power Devices (LDMOS), International Electron Devices Meeting (IEDM) (1998)

    Google Scholar 

  11. Chung, Y.S., Willett, T., Macary, V., Merchant, S., Baird, B.: Energy capability of power devices with cu layer integration, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (1999)

    Google Scholar 

  12. Pages, B., Baird, J., Wang, T., Sicard, J.M., Dorkel, P., Dupuy, P., Lance, E., Huynh, Y.C.: Advanced power copper technology for SMARTMOS application designs, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2000)

    Google Scholar 

  13. Alagi, F., Labate, L., Andreini, A., Contiero, C.: Sub-millisecond energy handling capability improvement of IC power devices with thick copper metallization, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2003)

    Google Scholar 

  14. Efland, T. et al.: Lead frame on Chip offers integrated power bus and bond over active circuits, International Symposium on Power Semiconductor Devices and ICs (ISPSD), (2001)

    Google Scholar 

  15. Robl, W., Melzl, M., Weidgans, B., Hofmann, R., Stecher, M.: Copper metallization for power devices, IEEE/SEMI Advanced Semiconductor Manufacturing Conference (20070

    Google Scholar 

  16. Yee, P.K., Wai, W.T., Khong, Y.F.: Palladium-copper inter-diffusion during copper activation for electro-less nickel plating process on copeper power metal, International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (2014)

    Google Scholar 

  17. Riccardi, D. et al.: BCD8 from 7 to 70V: a new 0.18μm technology platform to address the evolution of applications towards smart power ICs with high logic contents, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2007)

    Google Scholar 

  18. Moscatelli, A. Merlini, G. Croce, P. Galbiati, C.C.: LDMOS implementation in a 0.35 um BCD technology (BCD6), International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2000)

    Google Scholar 

  19. Pendharkar, S., Pan, R., Tamura, T., Todd, B., Efland, T.: 7 to 30 V state-of-art power devices implementation in 0.25 um LBC7 BiCMOS-DMOS process technology, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2004)

    Google Scholar 

  20. Wu, C.C. et al: 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications, International Electron Devices Meeting (IEDM) (2002)

    Google Scholar 

  21. Schiml, T., et al: A 0.13μm CMOS platform with cu/ low-k interconnects for system on Chip apeplications, VLSI Technology Symposium (2001)

    Google Scholar 

  22. eMemory White Paper: Optimum selection of MTP solutions for Product Design, eMemory web site www.ememory.com.tw

  23. Lai, H.C., Cheng, K.Y., King, Y.C., Lin, C.J.: A 0.26-μm2 U-shaped nitride-based programming cell on pure 90-nm CMOS technology. IEEE Elect. Dev. Lett. 28, 9 (2007)

    Google Scholar 

  24. Chung, S., Fang, W.K., Hsu, Y.C., Hsiao, J.Y., Lin, L., Yu, W.H.: Ultra-small and ultra-reliable innovative fuses scalable from 0.35um to 28nm, International Conference on Microelectronic Test Structures (ICMTS) (2016)

    Google Scholar 

  25. Mitani, H., Matsubara, K., Yoshida, H., Hashimoto, T., Yamakoshi, H., Abe, S., Kono, T., Taito, Y., Ito, T., Krafuji, T., Noguchi, K., Hidaka, H., Yamauchi, T.: A 90nm embedded 1T-MONOS Flash macro for automotive applications with 0.07mJ/8kB rewrite energy and endurance over 100M cycles under Tj of 175°C, International Solid-State Circuit Conference (ISSCC) (2016)

    Google Scholar 

  26. Chil, M.N., Yang, O.S., Ke, D., Mo, K.J., Kun, L., Tiong, M., Verma Purakh, R., Nair, R.: Advanced 300mm 130nm BCD technology from 5V to 85V with Deep-Trench Isolation, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2016)

    Google Scholar 

  27. Iwamoto, K., Kori, M., Terada, C., Doguchi, T., Mihara, M., Kasa, Y., Ukai, K., Ujiie, Y., Uehara, H., Hamanaka, C., Tanaka, B., Wada, K., Shimizu, S., Shukuri, S. , Izμmi, N., Mifuji, M.: Advanced 300mm 0.13μm BCD technology from 5V to 80V with highly reliable embedded Flash, International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2014

    Google Scholar 

  28. Akinaga, H., Shima, H.: Resistive Random Access Memory (ReRAM) Based on Metal Oxides, Proceedings of the IEEE Vol.98, No. 12, December

    Google Scholar 

  29. Jameson, J.R., Dinh, J., Gonzales, N., Hollmer, S., Hsu, S., Kim, D., Koushan, F., Lewis, D., Runnion, E., Shields, J., Tysdal, A., Wang, D., Gopinath, V.: Towards automotive grade embedded RRAM, European Solid State Device Research Conference (ESSDERC) (2018)

    Google Scholar 

  30. X. Fong, Y. Kim, R. Venkatesan, S. H. Choday, A. Raghunathan, K. Roy, Spin-transfer torque memories: devices, circuits and systems , Proc. IEEE Vol.104, No. 7, July 2016

    Google Scholar 

  31. Golonzka, O., et al: MRAM as embedded non-volatile memory solution for 22FFL FinFET technology, International Electron Devices Meeting (IEDM) (2018)

    Google Scholar 

  32. Lua, Y., Zhongb, T., et al: Fully functional perpendicular STT-MRAM macro embedded in 40 nm logic for energy-efficient IOT applications, International Electron Devices Meeting (IEDM) (2015)

    Google Scholar 

  33. Arnaud, F., Zuliani, P., et al: Truly innovative 28nm FDSOI Technology for Automotive Micro-Controller Applications embedding 16MB phase change memory, International Electron Devices Meeting (IEDM) (2018)

    Google Scholar 

  34. Iqbal, M.M.H., Udrea, F., Napoli, E.: On the static performance of the RESURF LDMOSFETS for power ICS, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2009)

    Google Scholar 

  35. Dennard, R.H., et al.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circ. SC-9(5), 256–268 (1974)

    Article  Google Scholar 

  36. Contiero, C., Galbiati, P., Palmieri, M., Vecchi, L.: Characteristics and applications of a 0.6 μm bipolar-CMOS-DMOS technology combining VLSI non-volatile memories, International Electron Devices Meeting (IEDM), (1996)

    Google Scholar 

  37. Hower, P., Lin, J., Pendharkar, S., Hu, B., Arch, J. Smith, J., Efland, T.: A rugged LDMOS for LBC5 technology, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2005)

    Google Scholar 

  38. Zhu, R., Parthasarathy, V., Khemka, V., Bose, A., Roggenbauer, T.: Implementation of high-side high-voltage RESURF LDMOS in a subhalf-micron smart-power technology, International Symposium on Power Semiconductor Devices and ICs (ISPSD), (2001

    Google Scholar 

  39. Reggiani, S., Barone, G., Gnani, E., Gnudi, A., Baccarani, G., Poli, S., Chuang, M.-Y., Tian, W., Wise, R.: TCAD predictions of linear and saturation HCS degradation in STI-based LDMOS transistors stressed in the impact-ionization regime, International Symposium on Power Semiconductor Devices and ICs (ISPSD), (2013)

    Google Scholar 

  40. Sharma, P., Tyaginov, S., Jech, M., Wimmer, Y., Rudolf, F., Enichlmair, H., Park, J.M., Ceric, H., Grasser, T.: The role of cold carriers and multiple carrier process of Si-H bond dissociation for hot carrier degradation in n- and p-channel LDMOS devices. Solid State Electron. 115 (2016)

    Google Scholar 

  41. Tallarico, A., Reggiani, S., Depetro, R., Torti, A., Croce, G., Sangiorgi, E., Fiegna, C.: Hot carrier degradation in power LDMOS: selective LOCOS vs STI- based architecture. J. Elect. Dev. Soc. 6, 219 (2018)

    Google Scholar 

  42. Mori, T., Fujii, H., Kubo, S., Ipposhi, T.: Investigation into HCI improvement by a split-recessed-gate structure in an STI-based nLDMOSFET, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2017)

    Google Scholar 

  43. Roggero, R., Croce, G., Gattari, P., Castellana, E., Molfese, A., Marchesi, G., Atzeni, L., Buran, C., Paleari, A., Ballarin, G., Manzini, S., Alagi, F., Pizzo, G.: BCD8sP: an advanced 0.16 μm technology platform with state of the art power devices, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2013)

    Google Scholar 

  44. Tallarico, A., Reggiani, S., Depetro, R., Torti, A., Croce, G., Sangiorgi, E., Fiegna, C.: Hot-carrier degradation in power LDMOS: selective LOCOS- versus STI-based architecture. IEEE J. Elect. Dev. Soc. 6, 219–226

    Google Scholar 

  45. Lin, D., Larry Tu, S., See, Y., Tam, P.: A novel LDMOS structure with a step gate oxide, International Electron Devices Meeting (IEDM) (1995)

    Google Scholar 

  46. Sithanandam, R., Kumar, M.J.: A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications, International Conference on VLSI Design (2010)

    Google Scholar 

  47. Wei, L., Chao, C., Singh, U., Jain, R., Goh, L., Verma, P.: A novel contact field plate application in drain-extended-MOSFET transistors, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2017)

    Google Scholar 

  48. Venturato, M., Cantone, G., Ronchi, F., Toia, F.: A novel 0.35μm 800V BCD technology platform for offline applications, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2012)

    Google Scholar 

  49. Cheng, S., Fang, D., Qiao, M., Zhang, S., Zhang, G., Gu, Y., He, Y., Zhou, X., Qi, Z., Li, Z., Zhang, B.: A novel 700V deep trench isolated double RESURF LDMOS with P-sink layer, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2017)

    Google Scholar 

  50. Arienti, G., Imperiale, I., Reggiani, S., Gnan, E., Gnudi, A., Baccarani, G., Nguyen, L., Hernandez-Luna, A., Huckabee, J., Denison, M.: Optimization of HV LDMOS devices accounting for packaging interaection, International Symposium on Power Semiconductor Devices and ICes (ISPSD) (2015)

    Google Scholar 

  51. Okawa, T., Eguchi, H., Taki, M., Hamada, K.: 2000 V SOI LDMOS with new drift structure for HVICs, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2016)

    Google Scholar 

  52. Disney, D., Lin, W., Liu, X., Pandey, S., Kim, J.: 180nm HVIC Technology for Digital AC/DC power conversion, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2017)

    Google Scholar 

  53. Murari, B., Contiero, C., Gariboldi, R., Sueri, S., Russo, A.: Smart power technologies evolution, IEEE industry applications conference (2000)

    Google Scholar 

  54. Kanert, W.: Reliability Challenges for Power Devices under Active Cycling. Montreal, International Reliability Physics Symposium (IRPS) (2009)

    Book  Google Scholar 

  55. Shaw, M.C.: High-performance packaging of power electronics. MRS Bull. 28, 41–50 (2003)

    Article  Google Scholar 

  56. Smorodin, T., Bohm, C., Gaspar, J., Schmidt, M., Paul, M., Stecher, M.: Modeling and improvement of a metallization system subjected to fast temperature cycle stress, EuroSimE – international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and micro-systems (20080

    Google Scholar 

  57. Smorodin, T., Wilde, J., Nelle, P., Lilleodden, E., Stecher, M.: Modeling of DMOS subjected to fast temperature cycle stress and improvement by a novel metallization concept, International Reliability Physics Symposium (IRPS) (2008)

    Google Scholar 

  58. Stecher, M., Nelle, P., Busch, J., Alpern, P.: Interconnect Technologies for Smart Power Integrated Circuits in the area of automotive power applications, IEEE International Interconnect Technology Conference, (2011)

    Google Scholar 

  59. Nelhiebel, M., Illing, R., Schreiber, C., Wöhlert, S., Lanzerstorfer, S., Ladurner, M., Kadow, C., Decker, S., Dibra, D., Unterwalcher, H., Rogalli, M., Robl, W., Herzig, T., Poschgan, M., Inselsbacher, M., Glavanovics, M., Fraissé, S.: A Reliable Technology Concept for Active Power Cycling to Extreme Temperatures. Elsevier, Microelectronics Reliability (2011)

    Book  Google Scholar 

  60. Pozzobon, F., Paci, D., Pizzo, G., Buri, A., Morin, S., Carace, F., Andreini, A., Gastaldi, D., Bertarelli, E., Lucchini, R., Vena, P.: Reliability characterization and FEM modeling of power devices under repetitive power pulsing, International Reliability Physics Symposium (IRPS) (2013)

    Google Scholar 

  61. Andreini, A., Neva, C., Renard, L., Sironi, G., Speroni, F., Sponton, L., Tampellini, F., Tiziani, R.: Pad Over Active (POA) solutions for three metal level BCD5 mixed power process – design and validation of ESD protections, European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (2003)

    Google Scholar 

  62. Andreini, A., Cerati, L., Pozzobon, F., Contiero, C.: Reliability Methods & Issues and ESD protection efficient design for smart power ICs, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2007)

    Google Scholar 

  63. Privitera, S., Wang, F., Niu, C., Dumont-Girard, P., Ding, H., Liu, K., Modica, R., Bongiorno, C.: Morphological and electrical characterization of SixCryCzBv thin films. Microelectron. Eng. 87, 430–433 (2010)

    Article  Google Scholar 

  64. Fernandez, M., Gonzalez, J.P., Abella, J.M., Martinez-Duart, J.M.: Co-sputtered Si-Cr resistive films. J. Mater. Sci. 22, 3703–3706 (1987)

    Article  Google Scholar 

  65. Kwon, Y., Kim, N., Choi, G., Lee, W., Seo, Y., Park, J.: Structural and surface properties of NiCr thin films prepared by DC magnetron sputtering under variation of annealing conditions. Microelectron. Eng. 82, 314–320 (2005)

    Article  Google Scholar 

  66. Li, Y., Donnet, D., Grzegorczyk, A., Cavelaars, J., Kuper, F.: Assessing the degradation mechanisms and current limitation design rules of SiCr-based thin-film resistors in integrated circuits, International Reliability Physics Symposium (IRPS), 2010

    Google Scholar 

  67. Downey, F.: IMD stack thermal resistance effects on SiCr thin film Resistor’s current density performance, International Integrated Reliability Workshop (IIRW) (2009)

    Google Scholar 

  68. Thibieroz, H., Shaner, P., Butler, Z.C.: Mismatch and flicker noise characterization of tantalum nitride thin file resistors for wireless applications, IEEE International Conference on Microelectronic Test Structures, vol. 14 March 2001

    Google Scholar 

  69. Roberts, D., et al.: Application of on-Chip MIM decoupling capacitor for 90nm SOI microprocessor, International Electron Devices Meeting (IEDM) (2005)

    Google Scholar 

  70. Jeannot, S., Bajolet, A., Manceau, J.-P., Cremer, S., Deloffre, E., J.-P. Oddou, Perrot, C., Benoit, D., Richard, C., Bouillon, P., Bruyere, S.: Toward next high performances MIM generation: up to 30fF/μm2 with 3D architecture and high-k materials, International Electron Devices Meeting (IEDM) 2007

    Google Scholar 

  71. Ghidini, G., Brazzelli, D., Piagge, R., Toia, F., Erbetta, D., Caniatti, M., Bellini, S.: AlHfO for MIM applications, Workshop on Dielectrics in MIcroelectrionics (WoDiM) (2016)

    Google Scholar 

  72. Greco, N., Parisi, A.: A 100-mW fully integrated DC-DC converter with double galvanic isolation, European Solid State Circuit Conference (ESSCIRC) (2017)

    Google Scholar 

  73. Munzerl, M., Ademmerl, W., Strzalkowski, B., Kaschani, K.T.: Insulated signal transfer in a half bridge driver IC based on coreless transformer technology, International Conference on Power Electronics and Drive Systems (PEDS) (2003)

    Google Scholar 

  74. Randjelovic, Z.B., Kayal, M., Popovic, R., Blanchard, H.: Highly sensitive hall magnetic sensor microsystem in CMOS technology. IEEE J. Solid State Circuits. 37, 151–159 (2002)

    Article  Google Scholar 

  75. Palumbo, V., Marchesi, M., Chiesi, V., Paci, D., Iuliano, P., Toia, F., Casoli, F., Ranzieri, P., Albertini, F., Morelli, M.: Hall current sensor IC with integrated co-based alloy thin film magnetic concentrator. Joint Eur. Mag. Symp. 40, 16002 (2012)

    Google Scholar 

  76. Fujihira, T.: Theory of Semiconductor Superjunction Devices. Jpn. J. Appl. Phys. 36(Part 1,N.10), 6254–6262 (1997)

    Article  Google Scholar 

  77. Duan, B., Cao, Z., et al.: New superjunction LDMOS breaking silicon limit by electric field modulation of buffered step doping. IEEE Elect. Dev. Lett. 36(1), 47 (2015)

    Article  Google Scholar 

  78. Onishi, Y., Finfet, S.J. : A new low voltage lateral Superjunction MOSFET, International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2008)

    Google Scholar 

  79. Duan, B., Yang, Y., Zhang, B., Hong, X.: Folded-accumulation LDMOST: new power MOS transistor with very low specific on-resistance. IEEE Elect. Dev. Lett. 30(12), 265 (2009)

    Google Scholar 

  80. Moens, P., Bauwens, F., Baele, J., Vershinin, K., De Backer, E., Sankara Narayanan, E.M., Tack, M.: XtreMOS: the first integrated power transistor breaking the silicon limit, International Electron Devices Meeting (IEDM) (2006)

    Google Scholar 

  81. Kondo, M., et al.: Thick-strained-Si/Relaxed-SiGe structure of high-performance RF power LDMOSFETs for cellular handsets. IEEE Trans. Electron Dev. 53, 12 (2006)

    Article  Google Scholar 

  82. Morita, T.: Monolithic integration of GaN power transistors integrated with gate drivers, International Workshop on Power Supply On Chip (PwrSoC) (2016)

    Google Scholar 

  83. Lidow, A.: GaN-on-Si in power conversion, International Workshop on Power Supply On Chip (PwrSoC) (2016). D. Kinzer: GaNFastâ„¢ power ICs enable breakthroughs in adapter performance, Applied Power Electronics Conference and Exposition (APEC) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Croce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Croce, G., Andreini, A., Galbiati, P., Diazzi, C. (2023). BCD Process Technologies. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics