Skip to main content
Log in

A Cross-Coupled Cascode Feedback Design of an Area-Efficient Frequency Compensated OTA

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A cross-coupled cascode feedback design for a frequency compensated operational transconductance amplifier (OTA) is presented here. This OTA is able to achieve a power supply rejection ratio (PSRR) 93 dB (DC) and common mode rejection ratio (CMRR) 41.41 dB (DC) with very low value of compensation capacitors 0.1pF driving a large load of 400pF||2.2kΩ. The proposed OTA design is simulated in 180 nm technology using Electric VLSI tool for validating its performance. The simulated results, PSRR 93 dB at 1 kHz, 83.42 dB at 1 MHz, 71.23 dB at 1 GHz are noted. Further simulated results, CMRR 41.41 dB at 1 kHz, 41.97 dB at 1 MHz and 70.79 dB at 1 GHz are also observed. Small signal and transient performances are analyzed and post-layout simulations bring out the following results: DC gain of 43.21 dB, unity-gain-frequency (UGF) of 27 MHz, Phase Margin of 48.50, slew-rate ( +) of 4.63 V/μs and slew-rate ( −) of 1.00 V/μs. Additionally, the circuit occupies an area of 0.014 \({\mathrm{mm}}^{2}\) and the power consumption observed is 3.17 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, L.; Zhan, C.; He, L.; Tang, J.; Wang, G.; Liu, Y. and Li, G.:A low power high PSRR CMOS voltage reference with active feedback frequency compensation for IOT applications. In: IEEE International Symposium on Circuit and Systems (ISCAS), 27–30 May (2018).

  2. Shad, E.H.T.; Molinas, M.; Ytterdal, T.:Modified current-reuse OTA to achieve high CMRR by utilizing cross-Coupled load. In: 15th conference on PHD research in Microelectronics and Electronics (PRIME), 15–18 July (2019).

  3. Han, G.; Jung, D.H.; Kim, T.W.: A 2.88mW+9.06dBm IIP3 common gate LNA with dual cross-coupled capacitive feedback. IEEE Trans. Microwave Theory Techn. 63(3), 1019–1025 (2015).

  4. Anisheh, S.M.; Abbasizadeh, H.; Shamsi, H.; Dadkhah, C.; Lee, K.Y.: 98dB gain class-AB OTA with 100pF load capacitor in 180nm digital CMOS process. IEEE Access, 7, 17772–17779 (2019).

  5. Bernal, M.R.V.; Celma, S.; Medrano, N.; Calvo, B.: Anultra low-power, low voltage class AB fully differential op-amp for long life autonomous portable equipment. IEEE Trans. Circuit Syst. II Express Briefs 60(10), 643–649 (2012)

    Google Scholar 

  6. Chatterje, S.; Tsividis, Y.; Kinget, P.: A.5V bulk-input fully differential operational transconductance amplifier. In: Proceedings of ESSCIRC Leuven Belgium, pp 147–150, Sep (2014).

  7. Zuo, L.; Islam, S.K.: Low voltage bulk driven operational amplifier with improved transconductance. IEEE Trans. Circuit Syst.- I Regular Papers 60(8), 2084–2091 (2012)

    Article  Google Scholar 

  8. Cabrera, E.; Pennisi, S.; Grasso, A.D.; Torralba, A.; Carvajal, R.G.; Bernal, M.R.V.: 0.7V three stage class-AB CMOS operational transconductance amplifier. IEEE Trans. Circuit Syst.- I Regular Papers 63(11), 1807–1815 (2016).

  9. Peng, X.; Sansen, W.; Hou, L.; Wang, J.; Wu, W.: Impedance adapting compensation for low-power multistage amplifiers. IEEE J. Solid State Circuits 46(2), 445–451 (2011)

    Article  Google Scholar 

  10. Chong, S.S.; Chan, P.K.: Cross feedforward cascode compensation for low power three stage with large capacitive load. IEEE J. Solid State Circuits 47(9), 2227–2234 (2012)

    Article  Google Scholar 

  11. Yan, Z.; Mak, P.I.; Law, M.K.; Martins, R.; Maloberti, F.: Nested current mirror rail-to-rail output single stage amplifier with enhancement of dc gain, GBW and slew rate. IEEE J. Solid State Circuits 50(10), 2353–2366 (2015).

  12. Ferreira, L.H.C.; Pimenta, T.C.; Moreno, R.L.: An ultra-low voltage ultra-low power CMOS miller OTA with rail-to-rail input/output swing. IEEE Trans. Circuit Syst. II Express Briefs, 54(10), 843–847(2007).

  13. Blalock, B.J.; Allen, P.E.; Rincon-Mora, G.A.: Designing 1-V op-amp using standard CMOS technology. Circuit Syst. II Analog Digital Signal Process. 45(7), 769–780 (1998)

    Article  Google Scholar 

  14. Ferreira, L.H.C.; Sonkusale, S.R.: A 60dB gain OTA operating at 0.25 V power supply in 130 nm digital CMOS process. IEEE Trans. Circuit Syst.-I Regular Papers, 61(6), 1609–1617 (2014).

  15. Kulej, T.; Khateb, F.:A compact.3V class AB bulk driven OTA.. IEEE Trans. Very Large Scale Integ. Syst. 28(1), 224–232 (2019).

  16. Magnelli, L.; Amoroso, F.A.; Crupi, F.; Cappuccino, G.; Iannaccone, G.: Design of a 75nW,.5V subthreshold complemenntory metal oxide semiconductor operational amplifier. Int. J. Circuit Theory Appl. 42(9), 967–977 (2013).

  17. Kulej, T.; Khateb, F.: Design and implementation of sub 0.5V OTA in 0.18μm CMOS. Int. J. Circuit Theory Appl. 46(6), 1129–1143 (2018).

  18. Aloisi, W.; Palumbo, G.; Pennisi, S.: Design methodology of miller frequency compensation with current buffer/amplifier. IET 2(2), 227–233 (2008)

    Google Scholar 

  19. Tan, M.; Ki, W.H.: Acascode miller-compensated three-stage amplifier with local impedance attenuation for optimized for complex-pole control. IEEE J. Solid State circuits 50(2), 440–449 (2015)

    Article  Google Scholar 

  20. Grasso, A.D.; Marano, D.; Palumbo, G.; Pennisi, S.: High-Performance three stage single-miller CMOS OTA with no upper limit of CL. IEEE Trans. Circuit Syst.-II Epress Briefs 65(11), 1529–1533 (2018).

  21. Aminzadeh, H.; Dashti, M.A.: Dual loop cascode-miller compensation with damping factor control unit for three-stage amplifiers driving ultralarge load capacitors. Int. J. Circuit Theory Appl. 46(1), 1–18 (2018)

    Article  Google Scholar 

  22. Paul, A.; Angulo, J.R.; Sanchez, A.D.; Martin, A.J.L.; Carvajal, R.G.; Li, F.X.: An enhanced Gain-Bandwidth class-AB miller op-amp with 23,800 MHzPf/mw FOM, 11–16 current efficiency and wide range of resistive and capacitive loads driving capability. IEEE Access 9, 69783–69797 (2021)

    Article  Google Scholar 

  23. Aminzadeh, H.; Ballo, A.; Grasso, A.D.: Frequency compensation of three-stage OTAs to achieve very wide capacitive load range. IEEE Access, 10, 70675–70687 (2022).

  24. Yan, Z.; Bian, Q.; Zhao, Y.; Yue, S.: Frequency compensation for multistage amplifiers using active-feedback current buffers. In: IEEE North-East Workshop on Circuits and Systems, pp 85–88, June (2006).

  25. Luh, L.; Choma, J. and Drapper, J.: A continuous-time common mode feedback circuit(CMFB) for high impedance current-mode applications. IEEE Trans. Circuit Syst.-II Analog Digital Signal Process. 47(4), 363–369 (2000).

  26. Wu, P.; Schaumann, R.; Latham, P.: Design considerations for common-mode feedback circuits in fully differential operational transconductance amplifiers with tuning. In: IEEE International Symposium on Circuits and Systems, pp 1363–1366, June (1991).

  27. Hurst, P.J.; Lewis, S.H.; Keane, J.P.; Aram, F.; Dyer, K.C.: Miller compensation using current buffers in fully differential CMOS two stage operational amplifiers. IEEE Trans. Circuit Syst.-I Regular Papers 51(2), 275–285 (2014)

    Article  Google Scholar 

  28. Pan, Z.; Qin, C.; Ye, Z.; Wang, Y.: Wideband inductorless low power LNA with Gm enhancement and noise cancellation. IEEE Trans. Circuit Syst.-I Regular Papers 65(1), 26–38 (2017)

    Article  Google Scholar 

  29. Razavi, B.: The cross-coupled pair-part II [A circuit for all seasons]. IEEE Solid State Circuits Mag. 6(4), 9–12 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sharma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sharma, R.K. A Cross-Coupled Cascode Feedback Design of an Area-Efficient Frequency Compensated OTA. Arab J Sci Eng 49, 6305–6317 (2024). https://doi.org/10.1007/s13369-023-08126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08126-8

Keywords

Navigation