Skip to main content
Log in

Objective Bayesian analysis for a capture–recapture model

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a special capture–recapture model, the \(M_t\) model, using objective Bayesian methods. The challenge is to find a justified objective prior for an unknown population size \(N\). We develop an asymptotic objective prior for the discrete parameter \(N\) and the Jeffreys’ prior for the capture probabilities \(\varvec{\theta }\). Simulation studies are conducted and the results show that the reference prior has advantages over ad-hoc non-informative priors. In the end, two real data examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I., (1972). Handbook of mathematical functions, New York: Dover.

  • Barger, K., Bunge, J. (2010). Objective bayesian estimation of the number of species. Bayesian Analysis, 5, 765–786.

    Google Scholar 

  • Basu, S., Ebrahimi, N. (2001). Bayesian capture-recapture methods for error detection and estimation of population size: heterogeneity and dependence. Biometrika, 88, 269–279.

    Google Scholar 

  • Berger, J., Bernardo, J., Sun, D. (2012). Objective priors for discrete parameter spaces. Journal of American Statistical Association, 107, 636–648.

    Google Scholar 

  • Bolfarine, H., Leite, J., Rodrigues, J. (1992). On the estimation of the size of a finite and closed population. Biometrical Journal, 34, 577–593.

    Google Scholar 

  • Chao, M., Strawderman, W. (1972). Negative moments of positive random variables. Journal of the American Statistical Association, 67, 429–431.

    Google Scholar 

  • Erdelyi, A., Tricomi, F. (1951). The asymptotic expansion of a ratio of gamma functions. Pacific Journal of Mathematics, 1, 133–142.

    Google Scholar 

  • Farcomeni, A., Tardella, L. (2010). Reference bayesian methods for alternative recapture models with heterogeneity. TEST, 19, 187–208.

    Google Scholar 

  • George, E., Robert, C. (1992). Capture-recapture sampling via gibbs sampling. Biometrika, 79, 677–683.

    Google Scholar 

  • Jeffreys, H. (1961). Theory of Probability. London: Oxford University Press.

  • Lindsay, B., Roeder, K. (1987). A unified treatment of integer parameter models. Journal of the American Statistical Association, 82, 758–764.

    Google Scholar 

  • Otis, D., Burghal, K., White, G., Anderson, D. (1978). Statistical inference from capture-recapture data on closed animal populations. Wildlife Monograph, 62, 1–135.

    Google Scholar 

  • Raftery, A. (1988). Analysis of simple debugging model. Applied Statistics, 37, 12–32.

    Google Scholar 

  • Royle, A. (2008). Analysis of capture-recapture models with individual covariates using data augmentation. Biometrics, 65, 267–274.

    Google Scholar 

  • Seber, G., Huakau, J., Simmons, D. (2000). Capture-recapture, epidemiology and list mismatches: two lists. Biometrics, 56, 1227–1232.

    Google Scholar 

  • Smith, P. (1991). Bayesian analyses for a multiple capture-recapture model. Biometrika, 78, 399–407.

    Google Scholar 

  • Tardella, L. (2002). new bayesian method for nonparametric capture-recapture models in presence of heterogeneity. Biometrika, 89, 807–817.

    Google Scholar 

  • Wang, X., He, C., Sun, D. (2005). Bayesian inference on the patient population size given list mismatches. Statistics in Medicine, 24, 249–267.

    Google Scholar 

  • Wang, X., He, C., Sun, D. (2007). Bayesian population estimation for small sample capture-recapture data using noninformative priors. Journal of Statistical Planning and Inference, 137, 1099–1118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Xu.

Appendices

Appendix A: Proof of Theorem 1

The likelihood function (2) can be written as the product of the probability mass functions of iid random vectors \({{\varvec{e}}}_j\)’s, \(j=1,\ldots ,N\), where \({{\varvec{e}}}_j=(e_{j0}, e_{j1}, \cdots , e_{jL})\) and

$$\begin{aligned} {{\varvec{e}}}_j\mid \varvec{\theta }\sim \text{ Multi }(1;p_0(\varvec{\theta }),\ldots ,p_L(\varvec{\theta })). \end{aligned}$$
(36)

The logarithm of the density of \({{\varvec{e}}}_j\) is

$$\begin{aligned} \log p({{\varvec{e}}}_j\mid \varvec{\theta })=\sum _{i=0}^L e_{ji}\log p_i(\varvec{\theta }). \end{aligned}$$
(37)

For convenience, define

$$\begin{aligned} C_j\doteq \Big \{s\in \{0,1,\ldots ,L=2^k\}: \text{ the } j\mathrm{th} \;\text{ binary } \text{ digit } \text{(from } \text{ left } \text{ to } \text{ right) } \text{ of }\;s\;\text{ is } \text{1 }\Big \} \end{aligned}$$

For any \(r=1,\ldots ,k\), we have

$$\begin{aligned}&\frac{\partial ^2}{\partial \theta _r^2}\sum _{i=0}^L e_{ji}\log p_i(\varvec{\theta }) \nonumber \\&\quad =\sum _{i=0}^L e_{ij} \sum _{j=1}^k \frac{\partial ^2}{\partial \theta _r^2} \left( b_{ij}\log \theta _j + (1-b_{ij})\log (1-\theta _j)\right) \nonumber \\&\quad = -\sum _{i=0}^L e_{ij} \left( \frac{b_{ir}}{\theta _r^2} + \frac{1-b_{ir}}{(1-\theta _r)^2}\right) . \end{aligned}$$
(38)

Since \(\text{ E }(e_{ji})=p_i(\varvec{\theta })\), we have

$$\begin{aligned} \text{ E }\left( \frac{\partial ^2}{\partial \theta _r^2}\sum _{i=0}^Le_{ji}\log p_i(\varvec{\theta }) \right) = -\sum _{i=0}^L \left( \frac{p_i(\varvec{\theta })b_{ir}}{\theta _r^2}+\frac{p_i(\varvec{\theta })(1-b_{ir})}{(1-\theta _r)^2}\right) . \end{aligned}$$
(39)

Let \(Q_{ir}=\frac{p_i(\varvec{\theta })b_{ir}}{\theta _r^2}+\frac{p_i(\varvec{\theta })(1-b_{ir})}{(1-\theta _r)^2}\). If \(b_{ir}=0\),

$$\begin{aligned} Q_{ir}=\frac{p_i(\varvec{\theta })}{(1-\theta _r)^2}=(1-\theta _r)^{-1} \prod _{j\ne r}\theta _j^{b_{ij}}(1-\theta _j)^{1-b_{ij}}. \end{aligned}$$
(40)

If \(b_{ir}=1\),

$$\begin{aligned} Q_{ir}=\frac{p_i(\varvec{\theta })}{\theta _r^2}=\theta _r^{-1} \prod _{j\ne r}\theta _j^{b_{ij}}(1-\theta _j)^{1-b_{ij}}. \end{aligned}$$
(41)

Notice that \(\prod _{j\ne r}\theta _j^{b_{ij}}(1-\theta _j)^{1-b_{ij}}\) does not depend on \(b_{ir}\) and equals \(1\). Therefore, we have

$$\begin{aligned} \text{ E }\left( \frac{\partial ^2}{\partial \theta _r^2}\sum _{i=0}^Le_{ji}\log p_i(\varvec{\theta }) \right) =\frac{1}{\theta _r(1-\theta _r)}. \end{aligned}$$
(42)

Also, we have

$$\begin{aligned} \frac{\partial ^2}{\partial \theta _s\theta _t}\sum _{i=0}^Le_{ji}\log p_i(\varvec{\theta })=0. \end{aligned}$$
(43)

Therefore, the Fisher information matrix for \(\varvec{\theta }\) is Diag \(\big \{\theta _1^{-1}(1-\theta _1)^{-1},\ldots , \theta _k^{-1} (1-\theta _k)^{-1}\big \}\), which yields the result. \(\square \)

Appendix B: Proof of Lemma 1

1.1 B.1 Proof of (15)

We start from studying \(J_1(N)\) to prove (15). Since \(\frac{1}{(N\;+\;a\;+\;b\;+\;i)^2}\) is decreasing in \(i\), for \(i=0, 1, \cdots \),

$$\begin{aligned} \frac{k}{(N+a+b+i+1)^2} < \int \nolimits _i^{i+1}\frac{k}{(N+a+b+x)^2}dx < \frac{k}{(N+a+b+i)^2}. \end{aligned}$$

Adding up the inequality from \(i=0\) to infinity, we get

$$\begin{aligned} 0\le \sum _{i=0}^\infty \frac{k}{(N+a+b+i)^2}-\int \nolimits _0^\infty \frac{k}{(N+a+b+x)^2}dx \le \frac{k}{(N+a+b)^2}.\qquad \end{aligned}$$
(44)

The integral in (44) is \(\frac{k}{N+a+b}\). Therefore,

$$\begin{aligned} \frac{k}{N+a+b} \le \sum _{i=0}^\infty \frac{k}{(N+a+b+i)^2} \le \frac{k}{N+a+b}+\frac{k}{(N+a+b)^2}. \end{aligned}$$
(45)

Apply (45) for \(k=1\) and \(a+b=1\), we have

$$\begin{aligned} \frac{1}{N+1} \le \sum _{i=0}^\infty \frac{1}{(N+1+i)^2} \le \frac{1}{N+1}+\frac{k}{(N+1)^2}. \end{aligned}$$
(46)

Combing (45) and (46), we can bound \(J_1(N)\) by

$$\begin{aligned} \frac{k}{N+a+b}-\frac{1}{N+1}-\frac{1}{(N+1)^2}\le J_1(N)\nonumber \\ \le \frac{k}{N+a+b} - \frac{1}{N+1}+ \frac{k}{(N+a+b)^2}. \end{aligned}$$
(47)

\(J_1(N)\) does not depend on the data, so \(\text{ E }(J_1(N))=J_1(N)\). So (15) follows from (47) immediately.

1.2 B.2 Proofs of (17) and (19)

The asymptotic order of \(\text{ E }(J_2(N))\) depends on the value of \(b\) and is summarized in (17) and (19). To prove these equations, we need the following result from Chao and Strawderman (1972). For \(X\sim Bin(N,p)\),

$$\begin{aligned} \text{ E }\left( \frac{1}{X+1}\right) = \frac{1-(1-p)^{N+1}}{(N+1)p}. \end{aligned}$$

For all \(1\le l\le k\), since \( m_l\mid N,\theta _l \sim \text{ Bin }(N,1-\theta _l)\), we can apply the above result and get

$$\begin{aligned} \frac{1}{k}\text{ E }(J_2(N))&= \text{ E }\left[ \text{ E }\left( \frac{1}{N-m_1+1}\mid \theta _1\right) \right] \nonumber \\&= \int \nolimits _0^1 \frac{1-\theta _1^{N+1}}{(N+1)(1-\theta _1)}\frac{\varGamma (a+b)}{\varGamma (a)\varGamma (b)}\theta _1^{a-1}(1-\theta _1)^{b-1}d\theta _1 \nonumber \\&= \frac{\varGamma (a+b)}{\varGamma (a)\Gamma (b)(N+1)}\sum _{j=0}^N\int \nolimits _0^1 \theta _1^{j+a-1}(1-\theta _1)^{b-1}d\theta _1 \nonumber \\&= \frac{\varGamma (a+b)}{\varGamma (a)(N+1)}\sum _{j=0}^N\frac{\varGamma (j+a)}{\varGamma (j+a+b)}. \end{aligned}$$
(48)

Therefore, we have the following decomposition which will be used for several times throughout the proof of Lemma 1.

$$\begin{aligned} \frac{1}{k}\text{ E }\left( J_{2}(N)\right) = J_{21}(N)+J_{22}(N)+J_{23}(N), \end{aligned}$$
(49)

where

$$\begin{aligned} J_{21}(N)&= \frac{\varGamma (a+b)}{\varGamma (a)(N+1)}\int \nolimits _0^N \frac{1}{(x+a)^b}dx, \end{aligned}$$
(50)
$$\begin{aligned} J_{22}(N)&= \frac{\varGamma (a+b)}{\varGamma (a)(N+1)}\left( \sum _{j=0}^N \frac{1}{(j+a)^b}-\int \nolimits _0^N \frac{1}{(x+a)^b}dx\right) , \end{aligned}$$
(51)
$$\begin{aligned} J_{23}(N)&= \frac{\varGamma (a+b)}{\varGamma (a)(N+1)}\sum _{j=0}^N\left( \frac{\varGamma (j+a)}{\varGamma (j+a+b)}-\frac{1}{(j+a)^b}\right) . \end{aligned}$$
(52)

Next, we will study the limiting behaviors of these three terms. The order of \(J_{21}(N)\) can be found out straightforwardly. When \(0< b <1\), \(J_{21}(N)\) can be written as

$$\begin{aligned} J_{21}(N)=\frac{\varGamma (a+b)}{(1-b)\varGamma (a)(N+1)}\left( (N+a)^{1-b} - a^{1-b}\right) \sim \frac{1}{N^b}. \end{aligned}$$
(53)

When \(b=1\),

$$\begin{aligned} J_{21}(N) = \frac{\varGamma (a+b)}{(1-b)\varGamma (a)(N+1)}\log \left( \frac{N+a}{a}\right) \sim \frac{\log (N+a)}{N+1}. \end{aligned}$$
(54)

For the second term \(J_{22}(N)\), we show that it is asymptotically smaller than \(N^{-1}\). For any \(0<a,b\le 1\), due to the monotonicity of \((x+a)^{-b}\), we can bound the integral as

$$\begin{aligned} \sum _{j=1}^N\frac{1}{(j+a)^b} < \int \nolimits _0^N \frac{1}{(x+a)^b}dx < \sum _{j=0}^{N-1}\frac{1}{(j+a)^b}, \end{aligned}$$
(55)

which is equivalent to

$$\begin{aligned} \frac{1}{(N+a)^b}<\sum _{j=0}^N\frac{1}{(j+a)^b}-\int \nolimits _0^N \frac{1}{(x+a)^b}dx < \frac{1}{a^b}. \end{aligned}$$
(56)

Therefore, \(J_{22}(N)\) can be bounded as

$$\begin{aligned} \frac{\varGamma (a+b)}{\varGamma (a)(N+1)(N+a)^b}<J_{22}(N)<\frac{\varGamma (a+b)}{ \varGamma (a)a^b(N+1)}, \end{aligned}$$
(57)

where the upper bound is in the order of \(1/N\).

Lastly, we prove that third term \(J_{23}(N)\) approaches \(1/N\) as \(N\rightarrow \infty \) for any \(0<a,b\le 1\). It follows from Erdelyi and Tricomi (1951) that for fixed \(\alpha , \beta \ge 0\), as \(z\rightarrow \infty \),

$$\begin{aligned} \frac{\varGamma (z+\alpha )}{\varGamma (z+\beta )}=z^{\alpha -\beta }\left( 1+\frac{(\alpha -\beta )(\alpha +\beta -1)}{2z}+O\left( \frac{1}{z^2}\right) \right) . \end{aligned}$$
(58)

Applying this expansion with \(z=j+a\), \(\alpha =0\), and \(\beta =b\),

$$\begin{aligned} \frac{\varGamma (j+a)}{\varGamma (j+a+b)}=\frac{1}{(j+a)^b}\left( 1+ \frac{b(1-b)}{2(j+a)}+J_{23}^*(j)\right) , \end{aligned}$$
(59)

where \(J_{23}^*(j)\sim O\left( (j+a)^{-2}\right) \), as \(j\rightarrow \infty \). Thus, we can rewrite \(J_{23}(N)\) as

$$\begin{aligned} J_{23}(N)=\frac{\varGamma (a+b)}{\varGamma (a)(N+1)}\left( \frac{b(1-b)}{2} \sum _{j=0}^N \frac{1}{(j+a)^{1+b}} +\sum _{j=0}^N\frac{J_{23}^*(j)}{(j+a)^b}\right) . \end{aligned}$$

The facts that

$$\begin{aligned} \sum _{j=0}^\infty \frac{1}{(j+a)^{1+b}}<\infty \quad \text{ and } \quad \sum _{j=0}^\infty \frac{J_{23}^*(j)}{(j+a)^b}<\infty \end{aligned}$$

ensure that as \(N\rightarrow \infty \),

$$\begin{aligned} J_{23}(N) \sim \frac{1}{N}. \end{aligned}$$
(60)

Applying (53), (54), (57), and (60) to (49) will prove (17) and (19). \(\square \)

1.3 B.3 Proofs of (18) and (20)

Note that \(J_3(N)\) can be bounded from both sides. On one hand,

$$\begin{aligned} J_{3}(N)&\le \sum _{l=1}^k\left[ \frac{1}{(N-m_l+b)^2}+\int \nolimits _0^\infty \frac{1}{(N-m_l+b+x)^2}dx\right] -\sum _{l=1}^k\frac{1}{N-m_l+1}\nonumber \\&= \sum _{l=1}^k\frac{1}{(N-m_l+b)^2}+\sum _{l=1}^k\left( \frac{1}{N-m_l+b}-\frac{1}{N-m_l+1}\right) \nonumber \\&= \sum _{l=1}^k\frac{1}{(N-m_l+b)^2}+\sum _{l=1}^k\frac{1-b}{(N-m_l+b)(N-m_l+1)} \nonumber \\&\le \sum _{l=1}^k\frac{1}{(N-m_l+b)^2}+\sum _{l=1}^k\frac{1-b}{(N-m_l+b)^2}\nonumber \\&= \sum _{l=1}^k\frac{2-b}{(N-m_l+b)^2}. \end{aligned}$$
(61)

On the other hand,

$$\begin{aligned} J_{3}(N)&\ge \sum _{l=1}^k\left( \int \nolimits _0^\infty \frac{1}{(N-m_l+b+x)^2}dx-\frac{1}{N-m_l+1}\right) \nonumber \\&= \sum _{l=1}^k\frac{1-b}{(N-m_l+b)(N-m_l+1)} \ge \sum _{l=1}^k\frac{b(1-b)}{(N-m_l+b)^2}. \end{aligned}$$
(62)

Let

$$\begin{aligned} J^*_{3}(N)=\text{ E }\left( \frac{1}{(N-m_1+b)^2}\right) . \end{aligned}$$

Inequalities (61) and (62) imply that \(\text{ E }(J_3(N))/J^*_3(N)\) can be controlled by positive constants.

$$\begin{aligned} b(1-b)J^*_{3}(N)\le \text{ E }(J_{3}(N))\le (2-b)J^*_{3}(N). \end{aligned}$$
(63)

It suffices to find out the asymptotic order of \(J^*_{3}(N)\). In fact,

$$\begin{aligned} J^*_{3}(N)&= \frac{\varGamma (a+b)}{\varGamma (a)\Gamma (b)}\int \nolimits _0^1 \frac{1}{(N-m_l+b)^2}\sum _{m_l=0}^N {N\atopwithdelims ()m_l} \theta _l^{m_l+a-1}(1-\theta _l)^{N-m_l+b-1} d\theta _l \nonumber \\&= \frac{\varGamma (a+b)}{\varGamma (a)\Gamma (b)}\sum _{i=0}^N\frac{\varGamma (N+1)\Gamma (i+a)\varGamma (N-i+b)}{(N-i+b)^2\varGamma (i+1) \Gamma (N-i+1)\varGamma (N+a+b)},\qquad \quad \end{aligned}$$
(64)

where \(m_l\) is replaced by \(i\) for notation simplicity. Since \(J^*_{3}(N)\) is a finite summation of positive components, it can be bounded from below by its last term,

$$\begin{aligned} J^*_{3}(N)\ge \frac{\varGamma (a+b)\Gamma (N+a)}{b^2\varGamma (a)\Gamma (N+a+b)} \approx \frac{\varGamma (a+b)}{b^2\varGamma (a)(N+a)^b}. \end{aligned}$$
(65)

Now, we bound \(J^*_{3}(N)\) from above. Applying (17) and (19) , we have for any \(0<b\le 1\), as \(N\rightarrow \infty \),

$$\begin{aligned} J^*_{3}(N)\le \frac{1}{b^2}\text{ E }\left( \frac{1}{(N-m_1+1)}\right) \sim \frac{\log ^{[b]}N}{(N+1)^b}. \end{aligned}$$
(66)

It follows from (65) and (66) that, as \(N\rightarrow \infty \), when \(0<b<1\),

$$\begin{aligned} J^*_{3}(N) \sim N^{-b}. \end{aligned}$$
(67)

When \(b=1\),

$$\begin{aligned} \frac{a}{N+a}\le J^*_{3}(N)\le \frac{C_1\log (N+a)}{N+1}. \end{aligned}$$
(68)

Combining (63), (67), and (68), we completed the proof of (18) and (20). \(\square \)

1.4 B.4 Proof of (16)–Basis: \(k=2, ~0<b<1\)

\(\text{ E }(J_4(N))\) is the leading term. Finding out its asymptotic order is the most challenging part of this proof. We will use induction method to study \(\text{ E }(J_4(N))\) and prove (16). In subsections B.4 and B.5, we will focus on the base case (basis) when \(k=2\). Specifically, in B.4, we will show that (16) holds when \(k=2, ~0<b<1\). In B.5, we will prove (16) when \(k=2, ~b=1\) with a different approach. Finally, we will prove (16) for any arbitrary \(k\ge 3\) (the inductive step) in B.6.

When \(k=2\), \(n\) follows a Binomial distribution:

$$\begin{aligned} n\mid N,\theta _1,\theta _2 \sim \text{ Bin }\left( N,1-(1-\theta _1)(1-\theta _2)\right) . \end{aligned}$$

Let \(\delta _i=1-\theta _i\), \(i=1,2\). For \(0<b<1\), the expectation of \(J_4(N)\) when \(k=2\), denoted by \(\text{ E }_2(J_4(N))\), can be expressed as

$$\begin{aligned}&\text{ E }_2(J_4(N))=\sum _{n=0}^N\left( \sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2}\right) \frac{\varGamma (N+1)}{\varGamma (n+1)\Gamma (N-n+1)} \nonumber \\&\qquad \int \nolimits _0^1\int \nolimits _0^1(1{-}\delta _1\delta _2)^n(\delta _1 \delta _2)^{N{-}n}B^{-2}(a,b) (\delta _1\delta _2)^{b-1} (1-\delta _1)^{a-1}(1-\delta _2)^{a-1} d\delta _1d\delta _2 \nonumber \\&\quad =\sum _{n=0}^N\left( \sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2}\right) \frac{B^{-2}(a,b)\varGamma (N+1)}{\varGamma (n+1)\Gamma (N-n+1)}\nonumber \\&\qquad \int \nolimits _0^1\int \nolimits _0^1(1-\delta _2+\delta _2(1-\delta _1))^n (\delta _2 \delta _2)^{N-n+b-1} (1-\delta _1)^{a-1}(1-\delta _2)^{a-1} d\delta _1d\delta _2 \nonumber \\&\quad =\sum _{n=0}^N\left( \sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2}\right) \!\frac{B^{-2}(a,b)\varGamma (N+1)}{\varGamma (n+1)\Gamma (N-n+1)}\!\sum _{j=0}^n\!\frac{\varGamma (n+1)}{\varGamma (j+1) \Gamma (n-j+1)}\nonumber \\&\qquad \int \nolimits _0^1\int \nolimits _0^1\delta _1^{N-n+b-1}(1-\delta _1)^{n-j+a-1}\delta _2^{N-j+b-1} (1-\delta _2)^{j+a-1} d\delta _1d\delta _2 \nonumber \\&\quad = J_{41}+J_{42}+J_{43}, \end{aligned}$$
(69)

where for \(l=1,2,3\),

$$\begin{aligned} J_{4l}(N)=\frac{B^{-2}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{n=0}^N \sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2} \frac{\varGamma (N-n+b)}{\varGamma (N-n+1)}J_{4l}^*(n),\nonumber \\ \end{aligned}$$
(70)

and

$$\begin{aligned} J^*_{41}(n)&= \int \nolimits _0^n\frac{1}{(x+1)^{1-a}(n-x+1)^{1-a}(N-x+1)^a}dx,\end{aligned}$$
(71)
$$\begin{aligned} J^*_{42}(n)&= \sum _{j=0}^n \frac{1}{(j+1)^{1-a}(n-j+1)^{1-a}(N-j+1)^a} - J^*_{41}(n), \end{aligned}$$
(72)
$$\begin{aligned} J^*_{43}(n)&= \sum _{j=0}^n \frac{\varGamma (j+a)\Gamma (n-j+a)\varGamma (N-j+b)}{\varGamma (j+1) \Gamma (n-j+1)\varGamma (N-j+a+b)}- J^*_{41}(n) -J^*_{42}(n).\qquad \end{aligned}$$
(73)

Notice that the forms of \(J^*_{42}(n), J^*_{43}(n)\) are similar with those of \(J_{22}(N), J_{23}(N)\). Therefore, the asymptotic bounds of \(J^*_{42}(n), J^*_{43}(n)\) can be obtained by adopting the similar approaches in the proof of (51) and (52). We omit the details and present the results below:

$$\begin{aligned} J_{4l}(N) \le \frac{1}{(N+1)^b} , \quad l=2,3. \end{aligned}$$
(74)

The term \(J_{41}(N)\) can be decomposed into two partial sums,

$$\begin{aligned} J_{41}(N)=J_{411}(N)+J_{412}(N), \end{aligned}$$
(75)

where

$$\begin{aligned}&J_{411}(N)=\dfrac{B^{-2}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\displaystyle \sum \limits _{n=0}^{N-\log N-1} \sum \limits _{i=0}^\infty \frac{1}{(N-n+1+i)^2} \frac{\varGamma (N-n+b)}{\varGamma (N-n+1)}J_{41}^*(n),\end{aligned}$$
(76)
$$\begin{aligned}&J_{412}(N)=\dfrac{B^{-2}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\displaystyle \sum \limits _{n=N-\log N}^N \sum \limits _{i=0}^\infty \frac{1}{(N-n+1+i)^2} \frac{\varGamma (N-n+b)}{\varGamma (N-n+1)}J_{41}^*(n). \end{aligned}$$
(77)

Interestingly, although \(J_{412}(N)\) has much less terms than \(J_{411}(N)\), it is the leading term. In fact, for \(k=2\) and \(0<b<1\), there exists positive constants \(C_2\), \(C_3\) such that as \(N\rightarrow \infty \),

$$\begin{aligned} J_{411}(N)&\le \frac{C_2\log ^b N}{(N+1)^b}, \end{aligned}$$
(78)
$$\begin{aligned} J_{412}(N)&\sim \frac{C_3B^{-2}(a,b)\log N}{(N+1)^b}. \end{aligned}$$
(79)

For \(J_{411}(N)\), let \(y=x/n\) and we can bound \(J_{41}^*(n)\) by

$$\begin{aligned} J_{41}^*(n)&=\frac{1}{n^{1-a}}\int \nolimits _0^1\frac{1}{(y+\frac{1}{n})^{1-a}(1-y+\frac{1}{n})^{1-a} (1-y+\frac{1}{n}+\frac{N-n}{n})^a}dy \nonumber \\&\le \frac{1}{n^{1-a}}\int \nolimits _0^1\frac{1}{(y+\frac{1}{n})^{1-a}(1-y+\frac{1}{n})}dy. \end{aligned}$$
(80)

The integral can be bounded as following. Notice that

$$\begin{aligned} 0\!&\le \!\int \nolimits _0^{1/2}\frac{1}{(y+1/n)^{1-a}(1-y+1/n)}dy \nonumber \\&\le \frac{1}{1/2+1/n}\int \nolimits _0^{1/2}\frac{1}{(y+1/n)^{1-a}}dy \le \frac{2}{a}\left( \frac{1}{2}+\frac{1}{n}\right) ^a \rightarrow \frac{2^{1-a}}{a}. \end{aligned}$$
(81)

Similarly, we have

$$\begin{aligned} \log n/2 \le \int \nolimits _{1/2}^1\frac{1}{(y+1/n)^{1-a}(1-y+1/n)}dy \le 2^{1-a}\log (1+n/2). \end{aligned}$$
(82)

It follows from (80), (81), (82) that,

$$\begin{aligned} J_{41}^*(n) \le \frac{2^{1-a}\log (n+1)}{(n+1)^{1-a}}. \end{aligned}$$
(83)

and consequently, applying the same decomposition and arguments as in (50), (51), (52), we have

$$\begin{aligned} J_{411}(N)&\le \frac{2B^{-2}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{n=0}^{N-\log N} \frac{\varGamma (N-n+b)}{\varGamma (N-n+2)}\frac{2^{1-a}\log (n+1)}{(n+1)^{1-a}}\nonumber \\&\le \frac{2^{4-2a}B^{-2}(a,b)\log ^b N}{(1-b)N^b}. \end{aligned}$$
(84)

Let \(C_2=\frac{2^{4-2a}B^{-2}(a,b)}{1-b}\) and we proved (78).

For \(J_{412}(N)\), note that \(J^*_{41}(n)\le \frac{\log (n+1)}{(n+1)^{1-a}}\), we get

$$\begin{aligned} J_{412}(N)&\le \frac{B^{-2}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{n=N-\log N}^N \left( \sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2}\right) \nonumber \\&\times \frac{\log (n+1)\varGamma (N-n+b)}{(n+a)^{1-a}\varGamma (N-n+1)}\nonumber \\&\le \frac{B^{-2}(a,b)\log (N+1)\varGamma (N+1)}{(N-\log N+1)^{1-a}\varGamma (N+a+b)}H(N), \end{aligned}$$
(85)

where

$$\begin{aligned} H(N)=\sum _{n=N-\log N}^N \left( \sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2}\right) \frac{\varGamma (N-n+b)}{\varGamma (N-n+1)} . \end{aligned}$$
(86)

On the other hand, notice that

$$\begin{aligned} J^*_{41}(N)&\ge \frac{1}{n^{1-a}}\int \nolimits _0^1 \frac{1}{\left( y+\frac{1}{n}+\frac{N-n}{n} \right) ^{1-a}\left( 1-y+\frac{1}{n}+\frac{N-n}{n}\right) }dy \\&\ge \frac{1}{n^{1-a}\left( 1+\frac{1}{n}+\frac{N-n}{n}\right) ^{1-a}} \int \nolimits _0^1 \frac{1}{ \left( 1-y+\frac{1}{n}+\frac{N-n}{n}\right) }dy \\&= \frac{1}{(N+1)^{1-a}} \left( \log n-\log (N-n+1)\right) . \end{aligned}$$

Since \(n<N-\log N\) and \(N-n > \log N\), we have

$$\begin{aligned} J^*_{41}(N) \ge \frac{1}{(N+1)^{1-a}} \left( \log (N-\log N)-\log (1+\log N)\right) . \end{aligned}$$
(87)

Consequently, we obtain a lower bound of \(J_{412}(N)\) by

$$\begin{aligned} J_{412}(N) \ge B^{-2}(a,b)\frac{[\log (N-\log N)-\log (1+\log N)] \varGamma (N+1)}{(N+1)^{1-a}\varGamma (N+a+b)}H(N).\quad \end{aligned}$$
(88)

Let \(m=N-n\) and we have

$$\begin{aligned} H(N)&= \sum _{m=0}^{\log N}\left( \sum _{i=0}^\infty \frac{1}{(m+1+i)^2}\right) \frac{\varGamma (m+b)}{\varGamma (m+1)}\nonumber \\&\le \sum _{m=0}^{\log N}\frac{2\varGamma (m+b)}{(m+1)\varGamma (m+1)} \le \sum _{m=0}^{\infty }\frac{2\varGamma (m+b)}{\varGamma (m+2)} \sim \sum _{m=0}^\infty \frac{1}{m^{2-b}} < \infty .\quad \end{aligned}$$
(89)

Since \(H(N)\) is an increasing function of \(N\), the limit of \(H(N)\) as \(N\rightarrow \infty \) exists and we assume \(\lim _{N\rightarrow \infty } H(N) = C_4\), where \(C_4\) is a positive constant. Combining (85) and (88), we have

$$\begin{aligned}&\frac{C_4B^{-2}(a,b)[\log (N-\log N)-\log (1+\log N)] \varGamma (N+1)}{(N+1)^{1-a}\varGamma (N+a+b)}\nonumber \\&\quad \le J_{412}(N) ~\le ~ \frac{C_4B^{-2}(a,b)\log (N+1)\varGamma (N+1)}{(N-\log N+1)^{1-a}\varGamma (N+a+b)}, \end{aligned}$$
(90)

which yields (79) immediately.

It follows from (75), (78), (79) that as \(N\rightarrow \infty \),

$$\begin{aligned} J_{41}(N) \sim \frac{C_3B^{-2}(a,b)\log N}{(N+1)^b}. \end{aligned}$$
(91)

Combining with (69) and (74), it is clear that \(J_{41}(N)\) is the leading term of \(\text{ E }_2(J_4(N))\), hence (16) holds for \(k=2, ~0<b<1\). \(\square \)

1.5 B.5 Proof of (16)–Basis: \(k=2, b=1\)

To show (16) for \(k=2,~b=1\), a different approach is required. Because \(J_4(N)\) can be bounded by

$$\begin{aligned} \frac{1}{N-n+1}\le J_4(N)\le \frac{1}{N-n+1} +\frac{1}{(N-n+1)^2}, \end{aligned}$$
(92)

it suffices to obtain the asymptotic orders of \(\text{ E }\frac{1}{N-n+1}\) and \(\text{ E }\frac{1}{(N-n+1)^2}\). Applying Chao and Strawderman (1972)’s result, the former expectation can be decomposed as

$$\begin{aligned} \text{ E }_2\Big (\frac{1}{N-n+1}\Big )&= \text{ E }\Big (\text{ E }\Big (\frac{1}{N-n+1}\mid \varvec{\theta }\Big ) \Big )\nonumber \\&= B^{-2}(a,1)\int \nolimits _0^1\int \nolimits _0^1 \frac{1-\left( 1-\prod _{i=1}^2(1-\theta _i)\right) ^{N+1}}{(N+1)\prod _{i=1}^2(1-\theta _i)}\prod _{i=1}^2\theta _i^{a-1} d\theta _1 d\theta _2 \nonumber \\&= B^{-2}(a,1)\int \nolimits _0^1 \int \nolimits _0^1 \frac{1-\left( 1-\prod _{i=1}^2 \delta _i\right) ^{N+1}}{(N+1)\prod _{i=1}^2\delta _i}\prod _{i=1}^2 (1-\delta _i)^{a-1}d\delta _1 d\delta _2 \nonumber \\&= \frac{B^{-2}(a,1)}{N\!+\!1}\!\sum _{j=0}^N \int \nolimits _0^1 \int \nolimits _0^1 \!\left( 1\!-\!\delta _{2}\!+\!\delta _{2}(1\!-\!\delta _1)\right) ^j \!\prod _{i=1}^{2} (1-\delta _i)^{a-1}d\delta _1 d\delta _2 \nonumber \\&= \frac{B^{-2}(a,1)}{N+1}\sum _{j=0}^N \frac{\varGamma (j+1)}{\varGamma (j+a+1)}\sum _{i=0}^j \frac{\varGamma (i+a)\Gamma (j-i+a)}{\varGamma (i+1)\Gamma (j-i+a+1)} \nonumber \\&= J_{44}(N)+J_{45}(N)+J_{46}(N), \end{aligned}$$
(93)

where for \(l=4,5,6\),

$$\begin{aligned} J_{4l}(N)=\frac{B^{-2}(a,1)}{N+1}\sum _{j=0}^N \frac{\varGamma (j+1)}{\varGamma (j+a+1)}J_{4l}^*(j), \end{aligned}$$
(94)

and

$$\begin{aligned} J^*_{44}(j)&= \int \nolimits _0^j\frac{1}{(x+a)^{1-a}(j-x+a)}dx, \end{aligned}$$
(95)
$$\begin{aligned} J^*_{45}(j)&= \sum _{i=0}^j\frac{1}{(i+a)^ {1-a}(j-i+a)} -\int \nolimits _0^j\frac{1}{(x+a)^{1-a}(j-x+a)}dx, \end{aligned}$$
(96)
$$\begin{aligned} J^*_{46}(j)&= \sum _{i=0}^j\frac{ \varGamma (i+a)\Gamma (j-i+a)}{\varGamma (i+1) \Gamma (j\!-\!i\!+\!a\!+\!1)} - \sum _{i=0}^j\frac{1}{(i+a)^{1-a}(j\!-\!i\!+\!a)}. \end{aligned}$$
(97)

The asymptotic orders or bounds of \(J_{4l}(N)\), \(l=4,5,6\), and \(\text{ E }\left( \frac{1}{(N-n+1)^2}\right) \) are summarized below. For fixed \(0<a\le 1\) and \(b=1\), sending \(N\) to infinity, we have

$$\begin{aligned} \dfrac{B^{-2}(a,1)\log ^2 N}{2(N+1)}&\le J_{44}(N) \le \dfrac{B^{-2}(a,1)\log ^2 N}{2(N+1)}+ \dfrac{B^{-2}(a,1)(\log N)^{3/2}}{a(N+1)},\qquad \end{aligned}$$
(98)
$$\begin{aligned} J_{4l}(N)&\le \dfrac{B^{-2}(a,1)\log N}{N+1}, \quad l=5,6, \end{aligned}$$
(99)
$$\begin{aligned} \text{ E }\left( \frac{1}{(N-n+1)^2}\right)&\le \dfrac{2B^{-2}(a,1)\log (N+1)}{N} . \end{aligned}$$
(100)

Due to the similarity of the proofs in nature, we will only prove (98), which gives the asymptotic order of the leading term. In fact, we let \(y=x/j\) and write \(J^*_{44}(j)\) as

$$\begin{aligned} J^*_{44}(j)=\frac{1}{j^{1-a}}\int \nolimits _0^1\frac{1}{(y+a/j)^{1-a}(1-y+a/j)}dy. \end{aligned}$$
(101)

This integral can be shown to have an order of \(\log j\) for \(j\) large enough. Let \(\epsilon =(\log j)^{-1/2}\). First, we integrate from \(0\) to \(1-\epsilon \).

$$\begin{aligned}&\int \nolimits _0^{1-\epsilon }\frac{1}{(y+a/j)^{1-a}(1-y+a/j)}dy \le \frac{1}{\epsilon +a/j}\int \nolimits _0^{1-\epsilon } \frac{1}{(y+a/j)^{1-a}}dy \nonumber \\&\qquad =\frac{1}{a(\epsilon +a/j)}\left[ (1-\epsilon +a/j)^a-(a/j)^a\right] \le \frac{(1-\epsilon +a/j)^a}{a(\epsilon +a/j)}. \end{aligned}$$
(102)

Second, we integrate from \(1-\epsilon \) to \(1\).

$$\begin{aligned}&\int \nolimits _{1-\epsilon }^1\frac{1}{(y+a/j)^{1-a}(1-y+a/j)}dy \nonumber \\&\quad \le \frac{1}{(1-\epsilon +a/j)^{1-a}}\int \nolimits _{1-\epsilon }^1 \frac{1}{1-y+a/j}dy = \frac{1}{(1-\epsilon +a/j)^{1-a}}\log \frac{\epsilon j+a}{a}.\nonumber \\\quad \end{aligned}$$
(103)

On the other hand,

$$\begin{aligned}&\int \nolimits _{1-\epsilon }^1\frac{1}{(y+a/j)^{1-a}(1-y+a/j)}dy \nonumber \\&\quad \ge \frac{1}{(1+a/j)^{1-a}}\int \nolimits _{1-\epsilon }^1 \frac{1}{1-a+a/j}dy = \frac{1}{(1+a/j)^{1-a}}\log \frac{\epsilon j+a}{a}.\qquad \end{aligned}$$
(104)

It follows from (81), (103), and (104) that

$$\begin{aligned}&\frac{1}{(1+a/j)^{1-a}}\log \frac{\epsilon j+a}{a} \le \int \nolimits _0^1\frac{1}{(y+a/j)^{1-a}(1-y+a/j)}dy \nonumber \\&\quad \le \frac{1}{(1-\epsilon +a/j)^{1-a}}\log \frac{\epsilon j+a}{a} + \frac{(1-\epsilon +a/j)^a}{\epsilon (\epsilon +a/j)}. \end{aligned}$$
(105)

Clearly,

$$\begin{aligned} \lim _{j\rightarrow \infty }\frac{1}{(1+a/j)^{1-a}}\frac{\log (\epsilon j+a)/a}{\log j}&= 1, \end{aligned}$$
(106)
$$\begin{aligned} \lim _{j\rightarrow \infty }\frac{1}{(1-\epsilon +a/j)^{1-a}} \frac{\log (\epsilon j+a)/a}{\log j}&= 1. \end{aligned}$$
(107)

Also, by the definition of \(\epsilon \), we have

$$\begin{aligned} \frac{(1-\epsilon +a/j)^a}{a(\epsilon +a/j)\log j} \sim \frac{1}{a(\log j)^{1/2}}. \end{aligned}$$
(108)

It follows from (105), (106), (107), and (108) that

$$\begin{aligned} \log j\le \int \nolimits _0^1\frac{1}{(y+a/j)^{1-a}(1-y+a/j)}dy \le \log j+\frac{1}{a}(\log j)^{1/2}. \end{aligned}$$
(109)

Combining (109) and (101), we have

$$\begin{aligned} \frac{\log j}{j^{1-a}}\le J^*_{44}(j) \le \frac{\log j}{j^{1-a}} + \frac{(\log j)^{1/2}}{aj^{1-a}} . \end{aligned}$$
(110)

From (110), we can apply the same decomposition as in (50), (51), (52) and prove (16) for \(k=2,~b=1\). The details of the decomposition are omitted to reduce the redundancy of the proof. \(\square \)

1.6 B.6 Proof of (16)–Inductive step

Here, we prove (16) for general \(k\ge 3, ~0<b\le 1\). Based on the discussions in B.4 and B.5, the asymptotic order of \(\text{ E }_2(J_4(N))\) can be summarized as the following. For \(k=2\) and \(0<a\le 1\),

  1. (1)

    when \(0<b<1\),

    $$\begin{aligned} \!\frac{C_2B^{-2}(a,b)\log (N+1)}{N^b}\!\le \text{ E }_2(J_4(N)) \!\le \frac{C_2B^{-2}(a,b)\log (N+1)}{N^b} + \frac{\log ^b N}{N^b};\nonumber \\ \end{aligned}$$
    (111)
  2. (2)

    when \(b=1\),

    $$\begin{aligned} \frac{B^{-2}(a,1)\log ^2 N}{2(N+1)}\le \text{ E }_2(J_4(N)) \le \frac{B^{-2}(a,1)\log ^2 N}{2(N+1)} + \frac{B^{-2}(a,1)\log ^{3/2} N}{a(N+1)}.\nonumber \\ \end{aligned}$$
    (112)

In general, we assume the capture–recapture experiment consists of \(k+1\) sampling occasions. So

$$\begin{aligned} n\mid N,\varvec{\theta }\sim \text{ Bin }\Big (N, 1-\prod _{i=1}^{k+1}(1-\theta _i)\Big ). \end{aligned}$$

For any fixed \(0<a,b\le 1\) and \(u=1,\cdots ,k+1\), we let \(\delta _u=1-\theta _u\), \(r=n-j\), and \(m=N-j\). The expected value of \(J_4(N)\) can be expressed as

$$\begin{aligned}&\text{ E }_{k+1}(J_4(N))\\&\quad =\sum _{n=0}^N\sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2} \frac{N!}{n!(N-n)!}\int \nolimits _0^1\cdots \int \nolimits _0^1\left( 1-\prod _{u=1}^{k+1} \delta _u\right) ^n\left( \prod _{u=1}^{k+1} x_u\right) ^{N-n} \\&B^{-(k+1)}(a,b)\prod _{u=1}^{k+1}\delta _u^{b-1}\prod _{u=1}^{k+1} (1-\delta _u)^{a-1}d\delta _1\cdots d\delta _{k+1} \\&\quad = B^{-(k+1)}(a,b)\sum _{n=0}^N\sum _{i=0}^\infty \frac{1}{(N\!-\!n\!+\!1\!+\!i)^2} \frac{\varGamma (N\!+\!1)}{\varGamma (n\!+\!1)\Gamma (N\!-\!n\!+\!1)}\\&\qquad \times \sum _{j=0}^n\frac{\varGamma (n+1)}{\varGamma (j+1)\!\Gamma (n-j+1)}\\&\quad \int \nolimits _0^1\cdots \!\int \nolimits _0^1 (1-\delta _{k+1})^j \delta _{k+1}^ {n-j} \!\left( 1-\prod _{u=1}^k\delta _u\right) ^{n-j} \delta _u^ {N-n+b-1}\\&\qquad \times \prod _{u=1}^{k+1} (1-\delta _u)^{a-1}d\delta _1\cdots d\delta _{k+1}. \end{aligned}$$

In this way, we can integrate out \(\delta _{k+1}\) and get the recursive formula.

$$\begin{aligned}&\text{ RHS }=\frac{B^{-(k+1)}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{n=0}^N\sum _{i=0}^\infty \frac{1}{(N-n+1+i)^2} \frac{1}{\varGamma (N-n+1)} \\&\qquad \times \sum _{j=0}^n\frac{\varGamma (j+a)\Gamma (N-j+b)}{\varGamma (j+1)\Gamma (n-j+1)}\\&\qquad \quad \int \nolimits _0^1\cdots \int \nolimits _0^1\left( 1-\prod _{u=1}^k\delta _u \right) ^{n-j}\prod _{u=1}^k\delta _u^{N-n+b-1}\prod _{u=1}^k(1-\delta _u)^{a-1} d\delta _1\cdots d\delta _k \\&\quad = \frac{B(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{m=0}^N \frac{\varGamma (N-m+a)\varGamma (m+b)}{\varGamma (N-m+1)\varGamma (m+1)} \sum _{r=0}^{m}\left( \sum _{i=0}^\infty \frac{1}{(m-r+1+i)^2}\right) \\&\qquad \quad \int \nolimits _0^1\cdots \int \nolimits _0^1 \frac{B^{-k}(a,b)\varGamma (m+1)}{\varGamma (r+1) \Gamma (m-r+1)}\left( 1-\prod _{u=1}^k\delta _u \right) ^r\\&\qquad \times \prod _{u=1}^k\delta _u^{m-r+b-1}\prod _{u=1}^k(1-\delta _u)^{a-1} d\delta _1\cdots d\delta _k \\&\quad =\frac{B(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{m=0}^N \frac{\varGamma (m+b)\Gamma (N-m+a)}{\varGamma (m+1)\Gamma (N-m+1)} \text{ E }_k(J_4(m)), \end{aligned}$$

where \(\text{ E }_k(J_4(N))\) denotes the expectation of \(J_4(N)\) when there are \(k\) sampling occasions. For fixed \(k\ge 3\), \(0<a\le 1\), and \(0<b<1\), we assume that for some constants \(C_5(k), C_6(k)\) depending on \(k\), such that as \(m\rightarrow \infty \),

$$\begin{aligned} \left| \text{ E }_k(J_4(m)) - \frac{C_2B^{-k}(a,b)\log ^{k-1}(m)}{m^b}\right| \le \frac{C_5(k)\log ^{k-2+b}(m)}{m^b}. \end{aligned}$$
(113)

For \(b=1\), we assume that

$$\begin{aligned} \left| \text{ E }_k(J_4(m)) - \frac{B^{-k}(a,1)\log ^{k}(m)}{m}\right| \le \frac{C_6(k)\log ^{k-1/2}(m)}{m}. \end{aligned}$$
(114)

Clearly, assumptions (113) and (114) hold for \(k=2\).

For \(k\ge 3\), we will show the following results that directly lead to (16). Assuming \(k+1\) sampling occasions and assumptions (113) and (114), we have for \(0<b<1\),

$$\begin{aligned} \left| \text{ E }_{k+1}(J_4(N)) - \frac{C_2B^{-(k+1)}(a,b)\log ^{k}(N)}{N^b}\right| \le \frac{C_5(k+1)\log ^{k-1+b}(N)}{N^b}. \end{aligned}$$
(115)

For \(b=1\),

$$\begin{aligned} \left| \text{ E }_{k+1}(J_4(N)) - \frac{B^{-(k+1)}(a,1)\log ^{k+1}(N)}{N}\right| \le \frac{C_6(k+1)\log ^{k+1/2}(N)}{N}. \end{aligned}$$
(116)

We focus on the case when \(0<b<1\) and prove (115). \(\text{ E }_{k+1}(J_4(N))\) can be decomposed after removing the first \(M+1\) terms (\(M\) is a fixed integer).

$$\begin{aligned} \!\text{ E }_{k+1}(J_4(N))\!&= \! \frac{C_2B^{-(k+1)}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\!\sum _{m=M}^N \!\frac{\varGamma (m+b)\Gamma (N-m+a)\log ^{k-1} m}{m^b\varGamma (m+1)\Gamma (N-m+1)} \nonumber \\&+\frac{B(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{m=M}^N \frac{\varGamma (m+b)\Gamma (N-m+a)}{\varGamma (m+1)\Gamma (N-m+1)}\nonumber \\&\times \left( \text{ E }_k(J_4(m))-\frac{C_2B^{-k}(a,b) \log ^{k-1} m}{m^b}\right) \nonumber \\&\equiv J_{4k1}(N) + J_{4k2}(N). \end{aligned}$$
(117)

By the similar approach in the proof of (50), (51), (52), we can approximate \(J_{4k1}(N)\) by

$$\begin{aligned} J_{4k1}(N) \approx \frac{C_2B^{-(k+1)}(a,b)\varGamma (N+1)}{\varGamma (N+a+b)} I_k(N), \end{aligned}$$
(118)

where

$$\begin{aligned} I_k(N)= \int \nolimits _M^N\frac{\log ^{k-1} x}{(x+1)(N-x+1)^{1-a}} dx. \end{aligned}$$
(119)

Below, we show that for any \(0<b<1\) and \(k\ge 2\), there exist positive constants \(C_7\) such that

$$\begin{aligned} \frac{\log ^k N}{N^{1-a}}- \frac{C_7\log ^{k-1}N}{N^{1-a}} \le I_k(N) \le \frac{\log ^k N}{N^{1-a}}. \end{aligned}$$
(120)

To prove (120), we first find the order of \(I_k(N)\) for \(k=2\). Let \(y=N-x\),

$$\begin{aligned} I_2(N)&=\int \nolimits _M^N\frac{\log x}{(x+1)(N-x+1)^{1-a}} dx \nonumber \\&= \frac{1}{N^{1-a}}\int \nolimits _{M/N}^1 \frac{\log y+\log N}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\sim \frac{\log ^2 N}{N^{1-a}}+ \frac{1}{N^{1-a}}\int \nolimits _{M/N}^1 \frac{\log y}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\le \frac{\log ^2 N}{N^{1-a}}. \end{aligned}$$
(121)

Now, we bound \(I_2(N)\) from below. Notice that

$$\begin{aligned}&\frac{1}{N^{1-a}}\int \nolimits _{M/N}^{1/2} \frac{\log y}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\quad \ge \frac{1}{(1/2+1/N)N^{1-a}}\int \nolimits _{M/N}^{1/2}\frac{\log y}{(1-y+1/N)^{1-a}}dy \nonumber \\&\quad \ge \frac{\log M-\log N}{(1/2+1/N)N^{1-a}}\int \nolimits _{M/N}^{1/2}\frac{1}{(1-y+1/N)^{1-a}}dy \nonumber \\&\quad =\frac{\log M-\log N}{a(1/2+1/N)N^{1-a}}\left[ (1-M/N+1/N)^a-(1/2+1/N)^a\right] \nonumber \\&\quad \approx \frac{\log M-\log N}{aN^{1-a}}. \end{aligned}$$
(122)

We also have

$$\begin{aligned}&\frac{1}{N^{1-a}}\int \nolimits _{1/2}^1 \frac{\log y}{(y+1/N)(1-y+1/N)^{1-a}}dy \ge -\frac{\log 2}{N^{1-a}}\int \nolimits _{1/2}^1 \frac{1}{(1-y+1/N)^{1-a}}dy \nonumber \\&\qquad = -\frac{\log 2}{a(1/2+1/N)N^{1-a}}\left[ (1/2+1/N)^a-(1/N)^a\right] \approx -\frac{\log 2}{aN^{1-a}}. \end{aligned}$$
(123)

It follows from (121), (122), and (123) that

$$\begin{aligned} \frac{\log ^2 N}{N^{1-a}}+\frac{\log M-\log N}{aN^{1-a}}-\frac{\log 2}{aN^{1-a}} \le I_2(N) \le \frac{\log ^2 N}{N^{1-a}}. \end{aligned}$$
(124)

For any fixed \(k\ge 2\), we obtain the upper bound of \(I_{k+1}(N)\).

$$\begin{aligned} I_{k+1}(N)&= \int \nolimits _M^N\frac{\log ^k x}{(x+1)(N-x+1)^{1-a}}dx \nonumber \\&= \frac{1}{N^{1-a}}\int \nolimits _{M/N}^1 \frac{(\log y+\log N)^k}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&= \frac{1}{N^{1-a}}\int \nolimits _{M/N}^1 \frac{(\log y+\log N)^{k-1}(\log y+\log N)}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&= I_{k}(N)\log N + \frac{1}{N^{1-a}}\int \nolimits _{M/N}^1 \frac{(\log y+\log N)^{k-1}\log y}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\le I_{k}(N)\log N . \end{aligned}$$
(125)

Next, we seek the lower bound of \(I_{k+1}(N)\). First of all,

$$\begin{aligned}&\frac{1}{N^{1-a}}\int \nolimits _{M/N}^{1/2} \frac{(\log y+\log N)^{k-1}\log y}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\quad \ge \frac{(\log M-\log N)\log ^{k-1}M}{N^{1-a}}\int \nolimits _{M/N}^{1/2} \frac{1}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\quad \ge \frac{(\log M-\log N)\log ^{k-1}M}{(1/2+1/N)N^{1-a}}\int \nolimits _{M/N}^{1/2}\frac{1}{(1-y+1/N)^{1-a}}dy \nonumber \\&\quad = \frac{(\log M-\log N)\log ^{k-1}M}{a(1/2+1/N)N^{1-a}} \left[ (1-M/N+1/N)^a-(1/2+1/N)^a \right] \nonumber \\&\quad \approx \frac{2(1-2^{-a})(\log M-\log N)\log ^{k-1}M}{aN^{1-a}}. \end{aligned}$$
(126)

Similarly,

$$\begin{aligned}&\frac{1}{N^{1-a}}\int \nolimits _{1/2}^1 \frac{(\log y+\log N)^{k-1}\log y}{(y+1/N)(1-y+1/N)^{1-a}}dy \nonumber \\&\quad \ge -\frac{(\log N-\log 2)^{k-1}\log 2}{a(1/2+1/N)N^{1-a}} \left[ (1/2+1/N)^a -(1/N)^a\right] \nonumber \\&\quad \approx -\frac{2^{1-a}\log 2 (\log N-\log 2)^{k-1}}{aN^{1-a}} . \end{aligned}$$
(127)

It follows from (125), (126), and (127) that

$$\begin{aligned} 0&\le I_k(N)\log N-I_{k+1}(N)\nonumber \\&\le \frac{2(1-2^{-a})(\log N-\log M)\log ^{k-1}M}{aN^{1-a}} +\frac{2^{1-a}\log 2 (\log N-\log 2)^{k-1}}{aN^{1-a}}.\qquad \quad \end{aligned}$$
(128)

Combining (124) and (128), we have proved (120). It follows from (118) and (120) that

$$\begin{aligned} \left| J_{4k1}(N)-\frac{C_2B^{-(k+1)}(a,b)\log ^k N}{N^b}\right| \le \frac{C_2C_7B^{-(k+1)}(a,b)\log ^{k-1} N}{N^b}. \end{aligned}$$
(129)

Similarly, we can show that

$$\begin{aligned} |J_{4k2}(N)|&\le \frac{B(a,b)\varGamma (N+1)}{\varGamma (N+a+b)}\sum _{m=M}^N \frac{\varGamma (m+b)\Gamma (N-m+a)\log ^{k-2+b}N}{m^b\varGamma (m+1)\Gamma (N-m+1)}\nonumber \\&\le \frac{C_8\log ^{k-1+b} N}{N^b}, \end{aligned}$$
(130)

where \(C_8\) is a positive constant. Combining (117), (129), (130), we get (115). In the case of \(b=1\), (116) can be proved in a similar manner. (115) and (116) imply (16) in Lemma 1.\(\square \)

About this article

Cite this article

Xu, C., Sun, D. & He, C. Objective Bayesian analysis for a capture–recapture model. Ann Inst Stat Math 66, 245–278 (2014). https://doi.org/10.1007/s10463-013-0413-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-013-0413-1

Keywords

Navigation