Skip to main content
Log in

Local empirical processes near boundaries of convex bodies

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We investigate the behaviour of Poisson point processes in the neighbourhood of the boundary ∂K of a convex body K in \({\mathbb{R}}\) ,d ≥ 2. Making use of the geometry of K, we show various limit results as the intensity of the Poisson process increases and the neighbourhood shrinks to ∂K. As we shall see, the limit processes live on a cylinder generated by the normal bundle of K and have intensity measures expressed in terms of the support measures of K. We apply our limit results to a spatial version of the classical change-point problem, in which random point patterns are considered which have different distributions inside and outside a fixed, but unknown convex body K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bronstein, E. M. (1976). \({\varepsilon}\) -Entropy of convex sets and functions. (Russian) Sibirski Mathematiceski Zurnal, 17, 508–514; English translation: Siberian Mathematical Journal, 17, 393–398.

  • Cooke P. (1979). Statistical inference for bounds of random variables.Biometrika 66:67–374

    Google Scholar 

  • Deheuvels P., Mason D. M. (1994). Functional laws of the iterated logarithm for local empirical processes indexed by sets. Annals of Probability 22:1619–1661

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels P., Mason D. M. (1995). Nonstandard local empirical processes indexed by sets. Journal of Statistical Planning and Inference 45: 91–112

    Article  MATH  MathSciNet  Google Scholar 

  • Dekkers A. L. M., Einmahl J. H. J., de Haan L. (1989). A moment estimator for the index of an extreme-value distribution. Annals of Statistics 17: 1833–1855

    Article  MathSciNet  Google Scholar 

  • Einmahl J. H. J. (1997). Poisson and Gaussian approximation of weighted local empirical processes. Stochastic Processes and Applications 70: 31–58

    Article  MATH  MathSciNet  Google Scholar 

  • Einmahl J. H. J., de Haan L., Piterbarg V. I. (2001). Nonparametric estimation of the spectral measure of an extreme value distribution. Annals of Statistics 29: 1401–1423

    Article  MathSciNet  Google Scholar 

  • Federer H. (1959). Curvature measures. Transactions of the American Mathematical Society 93: 418–491

    Article  MATH  MathSciNet  Google Scholar 

  • Heveling M., Hug D., Last G. (2004). Does polynomial parallel volume imply convexity? Mathematische Annalen 328: 469–479

    Article  MATH  MathSciNet  Google Scholar 

  • Hildebrand F.B. (1968). Finite-difference equations and simulations. Englewood Cliffs, Prentice-Hall

    MATH  Google Scholar 

  • Hug, D. (1999). Measures, curvatures and currents in convex geometry. Habilitationsschrift, Freiburg: Universität Freiburg.

  • Hug D., Last G. (2000). On support measures in Minkowski spaces and contact distributions in stochastic geometry. Annals of Probability 28: 796–850

    Article  MATH  MathSciNet  Google Scholar 

  • Hug D., Last G., Weil W. (2004). A local Steiner-type formula for general closed sets and applications. Mathematische Zeitschrift 246: 237–272

    Article  MATH  MathSciNet  Google Scholar 

  • Hug D., Last G., Weil W. (2006). Polynomial parallel volume, convexity and contact distributions of random sets. Probability Theory and Related Fields 135: 169–200

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov I. A., Has’minskii R. Z. (1981). Statistical estimation. asymptotic theory. New York, Springer

    MATH  Google Scholar 

  • Khmaladze E. (1998). Goodness of fit tests for “chimeric” alternatives. Statistica Neerlandica 52: 90–111

    Article  MATH  MathSciNet  Google Scholar 

  • Khmaladze E., Mnatsakanov R., Toronjadze N. (2006). The change-set problem for Vapnik-Ĉervonenkis classes. Mathematical Methods of Statistics 15: 224–231

    MathSciNet  Google Scholar 

  • Khmaladze, E., Weil, W. (2005). Local empirical processes near boundaries of convex bodies. Preprint Series, Department of Mathematics, University of Karlsruhe, 05/13.

  • Rataj J., Zähle M. (2001). Curvature and currents for unions of sets with positive reach II. Annals of Global Analysis and Geometry 20: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Reiss D. (1993). A course on point processes. New York, Springer

    MATH  Google Scholar 

  • Resnick S. (1986). Extreme values, regular variation, and point processes. New York, Springer

    Google Scholar 

  • Ripley B. D., Rasson J.-P. (1977). Finding the edge of a Poisson forest. Journal of Applied Probability 14: 483–491

    Article  MATH  MathSciNet  Google Scholar 

  • Sangwine-Yager J. R. (1994). A representation for volume involving interior reach. Mathematische Annalen 298: 1–5

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider R. (1993). Convex bodies: the Brunn-Minkowski theory. Encyclopedia of mathematics and its applications vol. 44. Cambridge, Cambridge University Press

    Google Scholar 

  • Shephard G. C., Webster R. J. (1965). Metrics for sets of convex bodies. Mathematika 12: 73–88

    Article  MATH  MathSciNet  Google Scholar 

  • Stute W. (1982). The oscillation behavior of empirical processes. Annals of Probability 10: 86–107

    Article  MATH  MathSciNet  Google Scholar 

  • van der Vaart A. W., Wellner J. A. (1996). Weak convergence and empirical processes. New York, Springer

    MATH  Google Scholar 

  • Zähle M. (1986). Integral and current representation of Federer’s curvature measures. Archiv der Mathematik 46: 557–567

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate Khmaladze.

About this article

Cite this article

Khmaladze, E., Weil, W. Local empirical processes near boundaries of convex bodies. Ann Inst Stat Math 60, 813–842 (2008). https://doi.org/10.1007/s10463-007-0123-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0123-7

Keywords

Navigation