Skip to main content
Log in

Does polynomial parallel volume imply convexity?

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For a non-empty compact set A⊂ℝd, d≥2, and r≥0, let A r denote the set of points whose distance from A is r at the most. It is well-known that the volume, V d (A ⊕r ), of A ⊕r is a polynomial of degree d in the parameter r if A is convex. We pursue the reverse question and ask whether A is necessarily convex if V d (A ⊕r ) is a polynomial in r. An affirmative answer is given in dimension d=2, counterexamples are provided for d≥3. A positive resolution of the question in all dimensions is obtained if the assumption of a polynomial parallel volume is strengthened to the validity of a (polynomial) local Steiner formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Zur Theorie der gemischten Volumina von konvexen Körpern, I. Verallgemeinerung einiger Begriffe der Theorie der konvexen Körper (in Russian). Mat. Sbornik N.S. 2, 947–972 (1937)

    Google Scholar 

  2. Betke, U., Henk, M., Wills, J.M.: Finite and infinite packings. J. Reine Angew. Math. 453, 165–191 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Brown, M.: Sets of constant distance from a planar set. Michigan Math. J. 19, 321–323 (1972)

    Article  MATH  Google Scholar 

  4. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    MATH  Google Scholar 

  5. Federer, H.: Geometric Measure Theory. Springer, Berlin, 1969

  6. Fenchel, W., Jessen, B.: Mengenfunktionen und konvexe Körper. Danske Vid. Selsk. Mat.-Fys. Medd. 16, 1–31 (1938)

    MATH  Google Scholar 

  7. Giannopoulos, A.A., Milman, V.D.: Euclidean structure in finite dimensional normed spaces, 707–779, W. B. Johnson, J. Lindenstrauss (Eds.), Handbook of the Geometry of Banach Spaces. Volume 1, Elsevier, Amsterdam, 2001

  8. Hadwiger, H.: Über das Volumen der Parallelmengen, Mitt. Naturf. Ges. Bern 3, 121–125 (1946)

    MathSciNet  MATH  Google Scholar 

  9. Hotelling, H.: Tubes and spheres in n-space, and a class of statistical problems. Amer. J. Math. 61, 440–460 (1939)

    MATH  Google Scholar 

  10. Hug, D., Last, G., Weil, W.: A local Steiner–type formula for general closed sets and applications. Math. Z. 246, 237–272 (2004)

    Article  Google Scholar 

  11. Kuriki, S., Takemura, A.: Tail probabilities of the maxima of multilinear forms and their applications. Ann. Stat. 29, 328–371 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Mecke, K.R., Stoyan, D.: (Eds.), Statistical Physics and Spatial Statistics - The Art of Analyzing and Modeling Spatial Structures and Pattern Formation. Lecture Notes in Physics 554, Springer-Verlag, Berlin, Heidelberg, New York, 2000

  13. Mecke, K.R., Stoyan, D.: (Eds.), Morphology of Condensed Matter - Physics and Geometry of Spatially Complex Systems. Lecture Notes in Physics 600, Springer-Verlag, Berlin, Heidelberg, New York, 2002

  14. Schneider, R.: Bestimmung konvexer Körper durch Krümmungsmaße. Comment. Math. Helv. 54, 42–60 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Schneider, R.: Parallelmengen mit Vielfachheit und Steiner-Formeln. Geom. Dedicata 9, 111–127 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993

  17. Schneider, R., Weil, W.: Stochastische Geometrie. Teubner Skripten zur Mathematischen Stochastik, Teubner, Stuttgart, 2000

  18. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Second Edition, Wiley, Chichester, 1995

  19. Zähle, M.: Integral and current representation of Federer’s curvature measures. Arch. Math. 46, 557–567 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hug.

Additional information

Mathematics Subject Classification (2000): 52A38, 28A75, 52A22, 53C65

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heveling, M., Hug, D. & Last, G. Does polynomial parallel volume imply convexity?. Math. Ann. 328, 469–479 (2004). https://doi.org/10.1007/s00208-003-0497-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-003-0497-7

Keywords

Navigation