Skip to main content
Log in

Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput sequencing (HtS) of the products and direct HtS of DNA extracted from the sand. A representative sand sample collected at Bahaï Wadi in the desert of the Republic of Chad was used. HtS with or without amplification showed the most promise and can be performed on ≤100 ng DNA. Since living microbes are often required, current best practices would involve geochemical and microscopic characterisation of the sample, followed by DNA isolation and direct HtS. Once the microbial content of the sample has been deciphered, growth conditions (including media) can be tailored to isolate the micro-organisms of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beck, A. (2002). Selektivität der Symbionten schwermetalltoleranter Flechten. Inaugural-dissertation, München, Germany, p. 196. ISBN: 3-9808102-0-8.

  • Beck, A., & Koop, H. U. (2001). Analysis of the photobiont population in lichens using a single-cell manipulator. Symbiosis, 31, 57–67.

    Google Scholar 

  • Bourrelly, P. (1966). Les Algues d’Eau Douce. Initiation à la Systématique. Tome I: Les Algues Vertes (p. 511). Paris: Éditions N. Boubée & Cie.

    Google Scholar 

  • Broughton, W. J., & Dilworth, M. J. (1971). Control of leghaemoglobin synthesis in snake beans. Biochemical Journal, 125, 1075–1080.

    CAS  Google Scholar 

  • Broughton, W. J., & John, C. K. (1979). Rhizobia in tropical legumes III. Experimentation and supply in Malaysia 1927–1976. In W. J. Broughton, C. K. John, J. C. Rajaro, & B. Lim (Eds.), Soil microbiology and plant nutrition (pp. 113–136). Kuala Lumpur: University of Malaya Press.

    Google Scholar 

  • Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, d141–d145.

    Article  CAS  Google Scholar 

  • Daniel, R. (2005). The metagenomics of soil. Nature Reviews Microbiology, 3, 470–478.

    Article  CAS  Google Scholar 

  • Delmont, T. O., Robe, P., Cecillon, S., Clark, I. M., Constancias, F., Simonet, P., et al. (2011). Accessing microbial diversity for soil metagenomic Studies. Applied and Environment Microbiology, 77, 1315–1324.

    Article  CAS  Google Scholar 

  • Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79, 73–100.

    Article  Google Scholar 

  • Ettl, H., & Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen (p. 721). Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Favet, J., Lapanje, A., Giongo, A., Kennedy, S., Davis-Richardson, A. G., Brown, C., et al. (2012). Microbial hitchhikers on intercontinental dust—Catching a lift in Chad. ISME Journal (in preparation).

  • Frey, J. (2011). Classification des organismes: Bactéries. Etat juillet 2011. Office fédéral de l’environnement, Berne. L’environnement pratique no 1114, p. 204.

  • Giles, J. (2005). The dustiest place on earth. Nature, 434, 816–819.

    Article  CAS  Google Scholar 

  • Giongo, A., Crabb, D. B., Davis-Richardson, A. G., Chauliac, D., Mobberley, J. M., Gano, K. A., et al. (2010a). PANGEA: Pipeline for Analysis of Next GEneration Amplicons. ISME Journal, 4, 852–861.

    Article  CAS  Google Scholar 

  • Giongo, A., Davis-Richardson, A. G., Crabb, D. B., & Triplett, E. W. (2010b). TaxCollector: Tools to modify existing 16S rRNA databases for the rapid classification at six taxonomic levels. Diversity, 2, 1015–1025.

    Article  CAS  Google Scholar 

  • Gorbushina, A. A., Heyrman, J., Dornieden, T., Gonzalez-Delvalle, M., Krumbein, W. E., Laiz, L., et al. (2004). Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). International Biodeterioration and Biodegradation, 53, 13–24.

    Article  Google Scholar 

  • Gorbushina, A. A., Kort, R., Schulte, A., Lazarus, D., Schnetger, B., Brumsack, H. J., et al. (2007). Life in Darwin’s dust—Intercontinental transport and survival of microbes in the nineteenth century. Environmental Microbiology, 9, 2911–2922.

    Article  CAS  Google Scholar 

  • Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20, 459–477.

    Article  Google Scholar 

  • Griffin, D. W., Gonzalez, C., Teigell, N., Petrosky, T., Northup, D. E., & Lyles, M. (2011). Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia, 27, 25–35.

    Article  Google Scholar 

  • Griffin, D. W., Kubilay, N., Kocak, M., Gray, M. A., Borden, T. C., & Shinn, E. A. (2007). Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41, 4050–4062.

    Article  CAS  Google Scholar 

  • Hirsch, P. R., Mauchline, T. H., & Clark, I. M. (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biology & Biochemistry, 42, 878–887.

    Article  CAS  Google Scholar 

  • Hoshina, R., Iwataki, M., & Imamura, N. (2010). Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycological Research, 58, 188–201.

    Article  CAS  Google Scholar 

  • Huang, X., Wang, J., Aluru, S., Yang, S. P., & Hillier, L. (2003). PCAP: A whole-genome assembly program. Genome Research, 13, 2164–2170.

    Article  CAS  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644.

    Article  Google Scholar 

  • Kennedy, S. (2009). Isolation of DNA and RNA from soil using two different methods optimized with Inhibitor Removal Technology® (IRT). Biotechniques, 19. doi:10.2144/000113290.

  • Lapanje, A., Zrimec, A., Drobne, D., & Rupnik, M. (2010). Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environmental Pollution, 158, 3186–3193.

    Article  CAS  Google Scholar 

  • Larena, I., Salazar, O., Gonzalez, V., Julian, M. C., & Rubio, V. (1999). Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. Journal of Biotechnology, 75, 187–194.

    Article  CAS  Google Scholar 

  • Pueppke, S. G., & Broughton, W. J. (1999). Rhizobium sp. NGR234 and R. fredii USDA257 share exceptionally broad, nested host-ranges. Molecular Plant-Microbe Interaction, 12, 293–318.

    Article  CAS  Google Scholar 

  • Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environment Microbiology, 49, 1–7.

    CAS  Google Scholar 

  • Schnetger, B. (1997). Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions. Fresenius Journal for Analytical Chemistry, 359, 468–472.

    Article  CAS  Google Scholar 

  • Shao, Y.-P. (2008). Physics and modelling of wind erosion. (p. 452). Berlin: Springer Science + Business Media B.V.

    Google Scholar 

  • Shao, Y.-P., Wyrwoll, K.-H., Chappell, A., Huang, J.-P., Lin, Z.-H., McTainsh, G. H., et al. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2, 181–204.

    Article  Google Scholar 

  • Toepfer, I., Favet, J., Schulte, A., Schmölling, M., Butte, W., Triplett, E. W., Broughton, W. J., & Gorbushina, A. A. (2012). Pathogens as potential hitchhikers on intercontinental dust. Aerobiologia, 28, 221–231.

    Google Scholar 

  • Whittaker, R. H., & Margulis, L. (1978). Protist classification and the kingdoms of organisms. BioSystems, 10, 3–18.

    Article  CAS  Google Scholar 

  • Winogradsky, M. S. (1925). Etudes sur la microbiologie du sol. Annales de l’Institut Pasteur, 34, 1–299.

    Google Scholar 

Download references

Acknowledgments

We would especially like to thank Dr. Agathe Stricker of the International Committee of the Red Cross in Geneva, Switzerland, for organising the collection of the “Sandman” sample C3 from the Republic of Chad. We thank Dora Gerber, Michal Parkan, Luiz Roesch and Wolfgang Streit for their unstinting help. In Switzerland, this work was supported by the Fonds National Suisse de la Recherche Scientifique (Projects 3100AO-104097 and 3100A0-116858), the Département de l’Instruction Publique du Canton de Genève and the Université de Genève. Work in the United States of America was made possible by grants from the National Science Foundation (Number MCB-0454030) and the United States Department of Agriculture (Numbers 2005-35319-16300, 00067345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Broughton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

10453_2012_9264_MOESM2_ESM.eps

Two litre “Leonard” jars planted with seedlings of Acacia albida, A. espinosa, A. saligna, A. schweinfurthii, A. tortilis and Vigna unguiculata (see Materials and methods). Panel A - jar inoculated with 1 g of sand from sample C3. Panel B - jar inoculated with 1 g sterile, quartz sand. Panel C – nodules on the roots of V. unguiculata. Panel D – nodules on the roots of A. espinosa. Panel E – nodules on the roots of A. albida. (EPS 18164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giongo, A., Favet, J., Lapanje, A. et al. Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples. Aerobiologia 29, 71–84 (2013). https://doi.org/10.1007/s10453-012-9264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9264-0

Keywords

Navigation