Skip to main content
Log in

Identification of species and genotypic compositions of Cryptomonas (Cryptophyceae) populations in the eutrophic Lake Hira, Japan, using single-cell PCR

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Single-cell PCR and gene sequencing were conducted to evaluate species and genotypic compositions of Cryptomonas in the eutrophic Lake Hira, Japan. We determined the sequences of nuclear internal transcribed spacer 2 region from single Cryptomonas cells with a high success rate (83.3–97.9 %), excluding one case (56.3 %). A total of 325 sequences were obtained over eight sampling days from May 28, 2012, to October 3, 2012, and phylogenetic analysis indicated that all sequences were divided into six groups. Four groups were clustered together with known sequences of C. curvata, C. marssonii, C. pyrenoidifera or C. tetrapyrenoidosa, although the sequences of the other two groups did not show high similarity to known Cryptomonas species. Cryptomonas curvata dominated during the study period (45–98 %), and unidentified Cryptomonas species (group 2) became dominant at high water temperatures. The genotypic composition of C. curvata also varied temporarily, suggesting that the genotypic composition of Cryptomonas was susceptible to environmental changes. These results indicated that single-cell PCR can be used to analyze the species composition and ecology of Cryptomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam MGM, Jahan N, Thalib L, Wei B, Maekawa T (2001) Effects of environmental factors on the seasonally change of phytoplankton populations in a closed freshwater pond. Environ Int 27:363–371

    Article  CAS  PubMed  Google Scholar 

  • Auinger BM, Pfandl K, Boenigk J (2008) Improved method for identification of protists and microalgae from plankton samples preserved in Lugol’s iodine solution: combining microscope analysis with single-cell PCR. Appl Environ Miocrobiol 74:2505–2510

    Article  CAS  Google Scholar 

  • Bachvaroff TR, Kim S, Guillou L, Delwiche CF, Coats DW (2012) Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Appl Environ Miocrobiol 78:334–345

    Article  CAS  Google Scholar 

  • Bicudo CEM, Ferragut C, Massagardi MR (2009) Cryptophyceae population dynamics in an oligo-mesotrophic reservoir (Ninféias pond) in São Paulo, southeast Brazil. Hoehnea 36:99–111

    Article  Google Scholar 

  • Briand E, Escoffier N, Straub C, Sabart M, Quiblier C, Humbert JF (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J 3:419–429

    Article  CAS  PubMed  Google Scholar 

  • Caisová L, Melkonian M (2014) Evolution of helix formation in the ribosomal internal transcribed spacer 2 (ITS2) and its significance for RNA secondary structures. J Mol Evol 78:324–337

    Article  PubMed  Google Scholar 

  • Caisová L, Marin B, Melkonian M (2013) A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164:482–496

    Article  PubMed  Google Scholar 

  • Choi B, Son M, Kim JI, Shin W (2013) Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea. Algae 28:307–330

  • Clay BL, Kugrens P, Lee RE (1999) A revised classification of Cryptophyta. Bot J Linnean Soc 131:131–151

    Article  Google Scholar 

  • Coleman AW (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151:1–9

    Article  CAS  PubMed  Google Scholar 

  • Deane JA, Strachan IM, Saunders GW, Hill DRA, McFadden GI (2002) Cryptomonas evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38:1236–1244

    Article  CAS  Google Scholar 

  • Ehrenberg CG (1831) Symbolae physicae seu icones et descriptiones animalium evertebratorum sepositis insectis quae ex itinere per Africanum Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Mittler, Berlin

  • Erata M, Chihara M (1987) Cryptomonads from the Sugadaira-Moor, Central Japan. Bull Sugadaira Mont Res Center Univ Tsukuba 8:57–69 (in Japanese with English summary)

    Google Scholar 

  • Graham JM, Kent AD, Lauster GH, Yannarell AC, Graham LE, Triplett EW (2004) Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microb Ecol 48:528–540

    Article  CAS  PubMed  Google Scholar 

  • Hodoki Y, Murakami T (2007) Comparison of phytoplankton biomass above a rivermouth barrage and in a freshwater reservoir, upper Isahaya Bay. Laguna 14:25–31 (in Japanese with English summary)

    Google Scholar 

  • Hodoki Y, Ohbayashi K, Kobayashi Y, Takasu H, Okuda N (2013) Anatoxin-a-producing Raphidiopsis mediterranea Skuja var. grandis Hill is one ecotype of non-heterocytous Cuspidothrix issatschenkoi (Usačev) Rajaniemi et al. in Japanese lakes. Harmful Algae 21–22:44–53

    Article  Google Scholar 

  • Hoef-Emden K (2005) Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons. J Mol Evol 60:183–195

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K (2007) Revision of the genus Cryptomonas (Cryptophyceae) II: incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46:402–428

    Article  Google Scholar 

  • Hoef-Emden K, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371–409

  • Holen DA, Boraas ME (1995) Mixotrophy in chrysophytes. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 119–140

    Chapter  Google Scholar 

  • Holms RM, Amiot A, Kérouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808

  • Ishimitsu M, Chihara M (1984) Four species of Cryptomonas (Class Cryptophyceae) in Japan. J Jpn Bot 59:161–169

    Google Scholar 

  • Japan Meteorological Agency (2013) Weather statics information. Japan Meteorological Agency. http://www.jma.go.jp/jma/menu/report.html

  • Ki J-S, Jang GY, Han M-S (2004) Integrated method for single-cell DNA extraction, PCR amplification, and sequencing of ribosomal DNA from harmful dinoflagellates Cochlodinium polykrikoides and Alexandrium catenella. Mar Biotechnol 6:587–593

  • Kim J-H, Boo SM, Shin W (2007) Two freshwater cryptomonads new to Korea: Cryptomonas marssonii and C. pyrenoidifera. Algae 22:147–152

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

  • Lewis WM (1983) A revised classification of lakes based on mixing. Can J Fish Aquat Sci 40:1779–1787

    Article  Google Scholar 

  • Melo S, Huszar VLM, Roland F, Esteves FA, Bozelli R (2004) Phytoplankton diel variation and vertical distribution in two Amazonian floodplain lakes (Batata Lake and Mussura Lake, Para-Brasil) with different mixing regimes. Amazonia 18:1–10

    Google Scholar 

  • Menezes M, Novarino G (2003) How diverse are planktonic cryptomonads in Brazil? Advantages and difficulties of a taxonomic-biogeographical approach. Hydrobiologia 502:297–306

    Article  Google Scholar 

  • Mitamura O, Ozaki M, Goto N (2014) Evaluation of nutrient deficiency for phytoplankton growth in lagoons connected to Lake Biwa. Academic reports of the University Research Center for Sustainability and Environment 11:47–56 (in Japanese with English summary)

  • Mizuno T (1971) Illustrations of the freshwater plankton of Japan. Hoikusha Publishing, Osaka

    Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotype. Nature 393:464–467

    Article  CAS  PubMed  Google Scholar 

  • Novarino G, Lucas IAN (1993) Some proposals for a new classification system of the Cryptophyceae. Bot J Linn Soc 111:3–21

    Article  Google Scholar 

  • Ohbayashi K, Hodoki Y, Kobayashi Y, Okuda N, Nakano S (2013) Genotypic composition and the relationship between genotypic composition and geographical proximity of the cyanobacterium Microcystis aeruginosa in western Japan. Can J Microbiol 59:266–272

    Article  CAS  PubMed  Google Scholar 

  • Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature 244:179–180

    Article  Google Scholar 

  • Porter KG (1988) Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159:89–97

    Article  Google Scholar 

  • Rott E (1988) Some aspects of the seasonal distribution of flagellate in mountain lakes. Hydrobiologia 161:159–170

    Article  Google Scholar 

  • Sabart M, Pobel D, Latour D, Robin J, Salencon MJ, Humbert JF (2009) Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. Environ Microbiol Rep 1:263–272

    Article  CAS  PubMed  Google Scholar 

  • Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozoology 38:76–81

    Article  Google Scholar 

  • Sanders RW, Porter KG (1988) Phagotrophic phytoflagellates. Adv Micrb Ecol 10:167–192

    Article  Google Scholar 

  • Smolander U, Arvola L (1988) Seasonal variation in the diel vertical distribution of the migratory alga Cryptomonas marssonii (Cryptophyceae) in a small, highly humic lake. Hydrobiologia 161:89–98

    Article  CAS  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using n, n-dimethylformaide. J Oceanogr 46:190–194

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New York

    Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAN (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed Central  PubMed  Google Scholar 

  • Urabe J, Gurung TB, Yoshida T, Sekino T, Nakanishi M, Maruo M, Nakayama E (2000) Diel changes in phagotrophy by Cryptomonas in Lake Biwa. Limnol Oceanogr 45:1558–1563

  • von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol Oceanogr 39:1985–1992

    Article  CAS  Google Scholar 

  • Xia S, Liu G-X, Hu Z-Y (2013) Morphological examination and phylogenetic position of two newly recorded freshwater Cryptomonas species (Cryptophyceae) from China. J Syst Evol 51:212–222

    Article  Google Scholar 

  • Yamamoto Y, Shiah F-K, Hsu S-C (2013) Seasonal variation in the net growth rate of the cyanobacterium Cylindrospermopsis raciborskii in a shallow artificial pond in northern Taiwan. Plankton Benthos Res 8:68–73

    Article  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

Download references

Acknowledgments

Financial support of the present study was partially provided under the Environment Research and Technology Development Fund (D-0905) of the Ministry of the Environment Japan and Japan Science and Technology Strategic International Research Cooperative Program project ‘Fate of dissolved organic matter in lakes with special reference to loading and pollution’. S. D. Thottathil was supported by a scholarship from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Nakano.

Additional information

Handling Editor: Bas W. Ibelings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement

Location of Lake Hira (a) and the study site in Lake Hira (b) (TIFF 8538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishino, H., Hodoki, Y., Thottathil, S.D. et al. Identification of species and genotypic compositions of Cryptomonas (Cryptophyceae) populations in the eutrophic Lake Hira, Japan, using single-cell PCR. Aquat Ecol 49, 263–272 (2015). https://doi.org/10.1007/s10452-015-9520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-015-9520-9

Keywords

Navigation