Skip to main content

Advertisement

Log in

Seasonal Dynamics of Phytoplankton and Planktonic Protozoan Communities in a Northern Temperate Humic Lake: Diversity in a Dinoflagellate Dominated System

  • Microbial Observatories
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Species diversity and richness, and seasonal population dynamics of phytoplankton, planktonic protozoa, and bacterioplankton sampled from the epilimnion of Crystal Bog in 2000, were examined in order to test the hypothesis that these groups’ diversity and abundance patterns might be linked. Crystal Bog, a humic lake in Vilas County, Wisconsin, is part of the North Temperate Lakes Long-Term Ecological Research Site. Phytoplankton and planktonic protozoa were identified and enumerated in a settling chamber with an inverted microscope. Bacterial cells were enumerated with the use of fluorescence 4′, 6′-diamidino-2-phenylindole (DAPI)-staining procedures, and automated ribosomal intergenic spacer analysis (ARISA) was used to assess bacterioplankton diversity. Bacterial cell counts showed little seasonal variation and averaged 2.6 × 106 cells/mL over the ice-free season. Phytoplankton and planktonic protozoan numbers varied by up to two orders of magnitude and were most numerous in late spring and summer. Dinoflagellates largely dominated Crystal Bog throughout the ice-free period, specifically Peridiniopsis quadridens in the spring, Peridinium limbatum in summer, and Gymnodinium fuscum and P. quadridens in fall. Brief blooms of Cryptomonas, Dinobryon, and Synura occurred between periods of dinoflagellate domination. The dominant dinoflagellate, Peridinium limbatum, was calculated to have a growth rate of 0.065 day−1 and a doubling time of 10.7 days. Heterotrophic nanoflagellates (HNFs) were a consistent component of the planktonic protozoa; seasonal patterns were determined for three genera of HNFs (Monosiga, Bicosoeca, and Desmarella moniliformis). Three genera of ciliates (Coleps, Strobilidium, and Strombidium) comprised the greater part of the planktonic protozoa in Crystal Bog. The number of species of planktonic protozoa was too low to calculate a diversity index. Shannon–Weaver diversity indices for phytoplankton and bacterioplankton in the epilimnion followed very similar seasonal patterns in this lake, supporting the hypothesis that in freshwaters, diversity patterns of these groups are linked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. C Amblard J-F Carrias G Bourdier N Maurin (1994) ArticleTitleThe microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities. Hydrobiologia 300/301 71–84 Occurrence Handle10.1007/BF00024449

    Article  Google Scholar 

  2. L Arvola K Salonen (2001) ArticleTitlePlankton community of a polyhumic lake with and without Daphnia longispina (Cladocera). Hydrobiologia 445 141–150 Occurrence Handle10.1023/A:1017588913646

    Article  Google Scholar 

  3. JR Beaver TL Crisman (1989) ArticleTitleAnalysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174 177–184 Occurrence Handle1:CAS:528:DyaL1MXmtFyqsLg%3D

    CAS  Google Scholar 

  4. P Bourrelly (1968) Les Algues d’Eau Douce Tome II Les Algues Jaunes et Brunes Éditions N Boubée & Cie Paris

    Google Scholar 

  5. JM Burkholder HB Glasgow Jr CW Hobbs (1995) ArticleTitleFish kills linked to a toxic ambush-predator dinoflagellate: distribution and environmental conditions. Mar Ecol Prog Ser 124 43–61

    Google Scholar 

  6. KL Cottingham SR Carpenter AL St. Amand (1998) ArticleTitleResponses of epilimnetic phytoplankton to experimental nutrient enrichment in three small seepage lakes. J Plankton Res 20 1889–1914

    Google Scholar 

  7. HT Croasdale CE deM Bicudo GW Prescott (1983) A Synopsis of North American Desmids, Part II, Section 5 University of Nebraska Press Lincoln, NE

    Google Scholar 

  8. MM Fisher EW Triplett (1999) ArticleTitleAutomated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65 4630–4636

    Google Scholar 

  9. MM Fisher JL Klug GH Lauster M Newton EW Triplett (2000) ArticleTitleEffects of resources and trophic interactions on freshwater bacterioplankton diversity. Microb Ecol 40 125–138 Occurrence Handle1:CAS:528:DC%2BD3cXotFCqs7w%3D Occurrence Handle11029081

    CAS  PubMed  Google Scholar 

  10. W Foissner H Berger (1996) ArticleTitleA user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwat Biol 35 375–482

    Google Scholar 

  11. Foissner, W, Blatterer, H, Berger, H, Kohmann, F (1991) Taxonomische and ökologische Revision der Ciliaten des Saprobiensystems — Band I: Cyrtophorida, Oligotrichida, Hypotrichida, Colpodea. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 1:1–478

  12. TM Frost JP Descy BT DeStasio GA Gerrish JM Hood JP Hurley AL St. Amand (2000) ArticleTitleEvaluations of phytoplankton communities using varied techniques: a multi-media comparison of lakes in northern Wisconsin USA. Verh Internat Verein Limnol 27 1023–1030

    Google Scholar 

  13. SI Heaney (1976) ArticleTitleTemporal and spatial distribution of the dinoflagellates Ceratium hirundinella OF Muller within a small productive lake. Freshwat Biol 6 531–542

    Google Scholar 

  14. H Hillebrand CD Durselen D Kirschtel U Pollinger T Zohary (1999) ArticleTitleBiovolume calculation for pelagic and benthic microalgae. J Phycol 35 403–424 Occurrence Handle10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  15. WD Hiorns BA Methé SA Nierzwicki-Bauer JP Zehr (1997) ArticleTitleBacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63 2957–2960 Occurrence Handle1:CAS:528:DyaK2sXktlersL4%3D Occurrence Handle9212443

    CAS  PubMed  Google Scholar 

  16. MG Höfle H Haas K Dominik (1999) ArticleTitleSeasonal dynamics of bacterioplankton community structure in a eutrophic lake as determined by 5S rRNA analysis. Appl Environ Microbiol 65 3164–3174

    Google Scholar 

  17. JB Hughes JJ Hellmann TH Ricketts BJM Bohannan (2001) ArticleTitleCounting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67 4399–4406 Occurrence Handle10.1128/AEM.67.10.4399-4406.2001 Occurrence Handle1:CAS:528:DC%2BD3MXns1Wisro%3D Occurrence Handle11571135

    Article  CAS  PubMed  Google Scholar 

  18. M Jansson P Blomqvist A Jonsson A-K Bergström (1996) ArticleTitleNutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol Oceanogr 41 1552–1559

    Google Scholar 

  19. K Jurgens (1953) ArticleTitleThe red tide of Lake Austin, Texas. Game Fish 2 8

    Google Scholar 

  20. K Kalinowska (2000) ArticleTitleCiliates in small humic lakes (Masurian Lakeland, Poland): relationship to acidity and trophic parameters. Pol J Ecol 48 169–183

    Google Scholar 

  21. RR Kudo (1971) Protozoology Charles C. Thomas Springfield, IL

    Google Scholar 

  22. ES Lindström (2000) ArticleTitleBacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40 104–113 Occurrence Handle1:CAS:528:DC%2BD3cXotFCqs78%3D Occurrence Handle11029079

    CAS  PubMed  Google Scholar 

  23. J Marty B Pinel-Alloul JF Carrias (2002) ArticleTitleEffect de la predation et des nutriments sur les reseaux microbiens planctoniques. Revue Sci de 1’Eau 15 37–49

    Google Scholar 

  24. DJ Patterson (1998) Free-Living Freshwater Protozoa John Wiley & Sons New York

    Google Scholar 

  25. EC Pielou (1977) Mathematical Ecology John Wiley & Sons New York

    Google Scholar 

  26. U Pollinger (1988) Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. CD Sandgren (Eds) Growth and Reproductive Strategies of Freshwater Phytoplankton Cambridge University Press Cambridge, UK 134–174

    Google Scholar 

  27. U Pollinger (1981) ArticleTitleThe structure and dynamics of the phytoplankton assemblages in Lake Kinneret, Israel. J Plankton Res 3 93–105

    Google Scholar 

  28. KG Porter YS Feig (1980) ArticleTitleThe use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25 943–948

    Google Scholar 

  29. J Popovsky LA Pfiester (1990) Subwasserflora von Mitteleuropa, Band 6, Dinophyceae (Dinoflagellida) Gustav Fischer Verlag Jena

    Google Scholar 

  30. GW Prescott (1951) Algae of the Western Great Lakes Area Cranbrook Institute of Science Bloomfield Hills, MI

    Google Scholar 

  31. GW Prescott HT Croasdale WC Vinyard (1975) A Synopsis of North American Desmids Part II, Section 1 University of Nebraska Press Lincoln, NE

    Google Scholar 

  32. GW Prescott HT Croasdale WC Vinyard (1977) A Synopsis of North American Desmids Part II, Section 2 University of Nebraska Press Lincoln, NE

    Google Scholar 

  33. GW Prescott HT Croasdale WC Vinyard CE deM Bicudo (1981) A Synopsis of North American Desmids Part II, Section 3 University of Nebraska Press Lincoln, NE

    Google Scholar 

  34. GW Prescott CE deM Bicudo WC Vinyard (1982) A Synopsis of North American Desmids Part II, Section 4 University of Nebraska Press Lincoln, NE

    Google Scholar 

  35. K Rengefors C Legrand (2001) ArticleTitleToxicity in Peridinium aciculiferum — an adaptive strategy to outcompete other winter phytoplankton. Limnol Oceanogr 46 1990–1997 Occurrence Handle1:CAS:528:DC%2BD38Xht12lsw%3D%3D

    CAS  Google Scholar 

  36. N Revelante M Gilmartin (1982) ArticleTitleDynamics of phytoplankton in the Great Barrier Reef Lagoon. J Plankton Res 4 47–76

    Google Scholar 

  37. S Romo MR Miracle (1995) ArticleTitleDiversity of the phytoplankton assemblages of a polymictic hypertrophic lake. Arch Hydrobiol 132 363–384

    Google Scholar 

  38. RW Sanders KG Porter (1988) Phagotrophic phytoflagellates. KC Marshall (Eds) Advances in Microbial Ecology Plenum New York 167–192

    Google Scholar 

  39. GM Smith (1950) The Fresh-Water Algae of the United States McGraw-Hill New York

    Google Scholar 

  40. U Sommer (1993) ArticleTitlePhytoplankton competition in Plußsee: a field test of the resource-ratio hypothesis. Limnol Oceanogr 38 838–845 Occurrence Handle1:CAS:528:DyaK2cXit1GqtLY%3D

    CAS  Google Scholar 

  41. DK Stoecker (1999) ArticleTitleMixotrophy among dinoflagellates. J Eukaryot Microbiol 46 397–401

    Google Scholar 

  42. EJ Van Hannen G Zwart MP Van Agterveld HJ Gons J Ebert HJ Laanbroek (1999) ArticleTitleChanges in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65 795–801

    Google Scholar 

  43. SB Watson E McCauley JA Downing (1997) ArticleTitlePatterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42 487–495

    Google Scholar 

  44. RG Wetzel (2001) Limnology Academic Press San Diego

    Google Scholar 

  45. RG Wetzel GE Likens (1991) Limnological Analyses Springer-Verlag New York

    Google Scholar 

  46. MG Wise JV McArthur LJ Shimkets (1997) ArticleTitleBacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl Environ Microbiol 63 1505–1514 Occurrence Handle1:CAS:528:DyaK2sXisVWrtLk%3D Occurrence Handle9097448

    CAS  PubMed  Google Scholar 

  47. WJ Woelkerling (1976) ArticleTitleWisconsin desmids I, Aufwuchs and plankton communities of selected acid bogs, alkaline bogs, and closed bogs. Hydrobiologia 48 209–232 Occurrence Handle10.1007/BF00028693

    Article  Google Scholar 

  48. J-T Wu L-L Kuo-Huang J Lee (1998) ArticleTitleAlgicidal effect of Peridinium bipes on Microcystis aeruginosa. Curr Microbiol 37 257–261 Occurrence Handle10.1007/s002849900375 Occurrence Handle1:CAS:528:DyaK1cXmt1agtrc%3D Occurrence Handle9732533

    Article  CAS  PubMed  Google Scholar 

  49. AC Yannarell AD Kent GH Lauster TK Kratz EW Triplett (2003) ArticleTitleTemporal patterns in bacterial communities in three temperate lakes of different trophic status. Microb Ecol 46 391–405 Occurrence Handle10.1007/s00248-003-1008-9 Occurrence Handle1:STN:280:DC%2BD2c%2FitlKgsA%3D%3D Occurrence Handle12904915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the National Science Foundation under grant number MCB-9977903 through the Microbial Observatory Program. The authors also thank Tim Kratz for support at the field sites and LTER data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, J., Kent, A., Lauster, G. et al. Seasonal Dynamics of Phytoplankton and Planktonic Protozoan Communities in a Northern Temperate Humic Lake: Diversity in a Dinoflagellate Dominated System. Microb Ecol 48, 528–540 (2004). https://doi.org/10.1007/s00248-004-0223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-004-0223-3

Keywords

Navigation