Skip to main content
Log in

A computational tool for comparing all linear PDE solvers

Error-optimal methods are meshless

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper provides a computational technique that allows to compare all linear methods for PDE solving that use the same input data. This is done by writing them as linear recovery formulas for solution values as linear combinations of the input data, and these formulas are continuous linear functionals on Sobolev spaces. Calculating the norm of these functionals on a fixed Sobolev space will then serve as a quality criterion that allows a fair comparison of all linear methods with the same inputs, including standard, extended or generalized finite–element methods, finite–difference– and meshless local Petrov–Galerkin techniques. The error bound is computable and yields a sharp worst–case bound in the form of a percentage of the Sobolev norm of the true solution. In this sense, the paper replaces proven error bounds by calculated error bounds. A number of illustrative examples is provided. As a byproduct, it turns out that a unique error–optimal method exists. It necessarily outperforms any other competing technique using the same data, e.g. those just mentioned, and it is necessarily meshless, if solutions are written “entirely in terms of nodes” (Belytschko et. al. Comput. Methods Appl. Mech. Eng., Spec. issue, 139, 3–47, 1996). On closer inspection, it turns out that it coincides with symmetric meshless collocation carried out with the kernel of the Hilbert space used for error evaluation, e.g. with the kernel of the Sobolev space used. This technique is around since at least 1998, but its optimality properties went unnoticed, so far. Examples compare the optimal method with several others listed above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atluri, S.N.: The Meshless Method (MLPG) for Domain and BIE Discretizations. Tech Science Press, Encino (2005)

    Google Scholar 

  2. Atluri, S.N., Zhu, T.-L.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuska, I., Banerjee, U., Osborn, J.E., Zhang, Q.: Effect of numerical integration on meshless methods. Comput. Mech. Appl. Mech. Eng. 198, 27–40 (2009)

    Article  MathSciNet  Google Scholar 

  4. Beatson, R.K., Cherrie, J.B., Mouat, C.T.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math. 11, 253–270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Belytschko, T., Krongauz, Y., Organ, D.J., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng., Spec. issue 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  6. Brown, D., Ling, L., Kansa, E.J., Levesley, J.: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions. Eng. Anal. Bound. Elem. 19, 343–353 (2005)

    Article  Google Scholar 

  7. Buhmann, M.D.: Radial Basis Functions, Theory and Implementations. Cambridge University Press (2003)

  8. Davydov, O., Schaback, R.: Error Bounds for Kernel-Based Numerical Differentiation. Draft (2013)

  9. Marchi, Stefano De, Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary Mathematical Sciences. World Scientific Publishers, Singapore (2007)

    Book  Google Scholar 

  11. Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comp. 93, 73–82 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. J. Appl. Math. Comp. 119, 177–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jost, J.: Partial Differential Equations, volume 214 of Graduate Texts in Mathematics. Springer-Verlag, New York (2002). Translated and revised from the 1998 German original by the author

    Google Scholar 

  15. Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proceedings of 1986 Simulation Conference, vol. 4, pp. 111–117 (1986)

  16. Kansa, E.J.: Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics - I: Surface approximation and partial dervative estimates. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes at applications vol. 1. Travaux et recherches mathématiques. Dunod (1968)

  18. D. Mirzaei, R. Schaback: Direct Meshless Local Petrov-Galerkin (DMLPG) method: a generalized MLS approximation. Appl. Numer. Math. (2013). doi:10.1016/j.apnum.2013.01.002

    Google Scholar 

  19. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32(3), 983–1000 (2012). doi:10.1093/imanum/drr030.

    Article  MATH  MathSciNet  Google Scholar 

  20. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Partridge, P.W., Brebbia, C.A., Wrobel, L.C.: The dual reciprocity boundary element method. CMP/Elsevier (1992)

  22. Šarler, B.: From global to local radial basis function collocation method for transport phenomena. In: Advances in meshfree techniques, Computer Methods Application Science, vol. 5, pp. 257–282. Springer, Dordrecht (2007)

    Google Scholar 

  23. Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx. 12, 331–340 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schaback, R.: Reconstruction of multivariate functions from scattered data (1997). Manuscript, available via http://www.num.math.uni-goettingen.de/schaback/research/group.html

  25. Schaback, R.: Unsymmetric meshless methods for operator equations. Numer. Math. 114, 629–651 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schaback, R.: Kernel–based meshless methods. Lecture Note, Göttingen (2011). http://num.math.uni-goettingen.de/schaback/teaching/AV2.pdf

  27. Schaback, R.: Direct discretizations with applications to meshless methods for PDEs. Dolomites Res. Notes Approx. Proc. DWCAA12 6, 37–51 (2013)

    Google Scholar 

  28. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algoritm. 24(3), 239–254 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shen, Q.: Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng. Anal. Bound. Elem. 34(3), 213–228 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shu, C., Ding, H., Yeo, K. S.: Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method. CMES Comput. Model. Eng. Sci. 7(2), 195–205 (2005)

    MATH  MathSciNet  Google Scholar 

  31. Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J. Comput. Phys. 228(12), 4606–4624 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vertnik, R., Šarler, B.: Local collocation approach for solving turbulent combined forced and natural convection problems. Adv. Appl. Math. Mech. 3(3), 259–279 (2011)

    MathSciNet  Google Scholar 

  33. Wendland, H.: Scattered Data Approximation. Cambridge University Press (2005)

  34. Wu, Z.: Convergence of interpolation by radial basis functions. Chinese Ann. Math. Ser. A 14, 480–486 (1993)

    MATH  MathSciNet  Google Scholar 

  35. Yao, G.M., Šarler, B., Chen, C.S.: A comparison of three explicit local meshless methods using radial basis functions. Eng. Anal. Bund. Elem. 35(3), 600–609 (2011)

    Article  MATH  Google Scholar 

  36. Yao, G.M., Siraj ul Islam, Šarler, B.: A comparative study of global and local meshless methods for diffusion-reaction equation. CMES Comput. Model. Eng. Sci. 59(2), 127–154 (2010)

    MATH  MathSciNet  Google Scholar 

  37. Yao, G.M., Siraj ul Islam, Šarler, B.: Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions. Eng. Anal. Bund. Elem. 36(11), 1640–1648 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schaback.

Additional information

Communicated by: Leslie Greengard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaback, R. A computational tool for comparing all linear PDE solvers. Adv Comput Math 41, 333–355 (2015). https://doi.org/10.1007/s10444-014-9360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9360-5

Keywords

Mathematics Subject Classifications (2010)

Navigation