Skip to main content
Log in

An Animal-Specific FSI Model of the Abdominal Aorta in Anesthetized Mice

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid–structure interaction (FSI) model of the abdominal aorta in ApoE−/− mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Arruda, E. M., et al. A 3-dimensionl constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2):389–412, 1993.

    Article  CAS  Google Scholar 

  2. Bersi, M. R., et al. Disparate changes in the mechanical properties of murine carotid arteries and aorta in response to chronic infusion of angiotensin-II. Int. J. Adv. Eng. Sci. Appl. Math. 4(4):228–240, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bols, J., et al. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246:10–17, 2013.

    Article  Google Scholar 

  4. Bols, J., et al. Inverse modelling of image-based patient-specific blood vessels: zero pressure geometry and in vivo stress incorporation. ESAIM—Math. Model. Num. Anal. 47(4):1059–1075, 2013.

    Article  Google Scholar 

  5. Bols, J., et al. Unstructured hexahedral mesh generation in complex vascular structures using a grid-based approach. Comput. Methods Biomech. Biomed. Eng., 2014, under review.

  6. Broisat, A., et al. Assessing low levels of mechanical stress in aortic atherosclerotic lesions from apolipoprotein E−/− mice—brief report. Arterioscler. Thromb. Vasc. Biol. 31(5):1007–1010, 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Caro, C. G. Discovery of the role of wall shear in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29(2):158–161, 2009.

    Article  CAS  PubMed  Google Scholar 

  8. Chandra, S., et al. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J. Biomech. Eng. 135(8):081001, 2013.

    Article  Google Scholar 

  9. Chen, G., et al. Impaired erythrocyte deformability in transgenic HO-1G143H mutant mice. Transgenic Res. 24(1):173–178, 2015.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, C., et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113(23):2744–2753, 2006.

    Article  PubMed  Google Scholar 

  11. Collins, M. J., et al. Mechanical properties of suprarenal and infrarenal abdominal aorta: Implications for mouse models of aneurysms. Med. Eng. Phys. 33(10):1262–1269, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Daugherty, A., et al. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Investig. 105(11):1605–1612, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Daugherty, A., et al. Antagonism of AT2 receptors augments Angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br. J. Pharmacol. 134(4):865–870, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Degroote, J. Development of Algorithms for the Partitioned Simulation of Strongly Coupled Fluid-structure Interaction Problems, in Faculty of Engineering Ghent University, Ghent pp. 108–110, 2010.

  15. Degroote, J., et al. Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86(23–24):2224–2234, 2008.

    Article  Google Scholar 

  16. Degroote, J., et al. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11–12):793–801, 2009.

    Article  Google Scholar 

  17. Endo, S., et al. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta—II. Abdom. Aorta Biorheol 51(4):257–274, 2014.

    Google Scholar 

  18. Feintuch, A., et al. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292(2):H884–H892, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Ford, M. D., et al. Hemodynamics of the Mouse Abdominal Aortic Aneurysm. J. Biomech. Eng. 133(12):121008, 2011.

    Article  PubMed  Google Scholar 

  20. Gasser, T. C., et al. A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29(4–5):340–360, 2002.

    Article  Google Scholar 

  21. Gavish, L., et al. Low level laser arrests abdominal aortic aneurysm by collagen matrix reinforcement in apolipoprotein E-deficient mice. Lasers Surg. Med. 44(8):664–674, 2012.

    Article  PubMed  Google Scholar 

  22. Gavish, L., et al. Inadequate reinforcement of transmedial disruptions at branch points subtends aortic aneurysm formation in apolipoprotein-E-deficient mice. Cardiovasc. Pathol. 23(3):152–159, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Greve, J. M., et al. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291(4):H1700–H1708, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Hoi, Y., et al. Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis. Ann. Biomed. Eng. 39(5):1414–1422, 2011.

    Article  PubMed  Google Scholar 

  25. Holzapfel, G. A., et al. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1–3):1–48, 2000.

    Article  Google Scholar 

  26. Huo, Y. L., et al. The flow field along the entire length of mouse aorta and primary branches. Ann. Biomed. Eng. 36(5):685–699, 2008.

    Article  PubMed  Google Scholar 

  27. Ku, D. N., et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation—positive correlation between plaque location and low and oscillating shear-stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  28. Leung, J. H., et al. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed. Eng. Online 5:33, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Manning, M. W., et al. Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc. Med. 7(1):45–54, 2002.

    Article  PubMed  Google Scholar 

  30. Rabben, S. I., et al. Ultrasound-based vessel wall tracking: an auto-correlation technique with RF center frequency estimation. Ultrasound Med. Biol. 28(4):507–517, 2002.

    Article  PubMed  Google Scholar 

  31. Reddy, A. K., et al. Measurement of aortic input impedance in mice: effects of age on aortic stiffness. Am. J. Physiol.-Heart Circ. Physiol. 285:H1464–H1470, 2003.

    Article  CAS  PubMed  Google Scholar 

  32. Reymond, P., et al. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3D FSI, 3D rigid wall and 1D models. Med. Eng. Phys. 35(6):784–791, 2013.

    Article  PubMed  Google Scholar 

  33. Rissland, P., et al. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J. Biomech. Eng. 131(3):031001, 2009.

    Article  PubMed  Google Scholar 

  34. Saraff, K., et al. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23(9):1621–1626, 2003.

    Article  CAS  PubMed  Google Scholar 

  35. Scotti, C. M., et al. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput. Methods Biomech. Biomed. Eng. 11(3):301–322, 2008.

    Article  Google Scholar 

  36. Thompson, S., et al. Hereditary differences in serum proteins of normal mice. Proc. Soc. Exp. Biol. Med. 87(2):315–317, 1954.

    Article  CAS  PubMed  Google Scholar 

  37. Trachet, B., et al. An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE−/− mice. Ann. Biomed. Eng. 39(9):2430–2444, 2011.

    Article  PubMed  Google Scholar 

  38. Trachet, B., et al. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data. J. Biomech. Eng. 133(12):121006–121013, 2011.

    Article  PubMed  Google Scholar 

  39. Trachet, B., et al. Longitudinal follow-up of ascending versus abdominal aortic aneurysm formation in angiotensin II-infused ApoE−/− mice. Artery Res. 8(1):16–23, 2014.

    Article  Google Scholar 

  40. Trachet, B., et al. Dissecting abdominal aortic aneurysm in ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation. Cardiovasc. Res. 105(2):213–222, 2015.

    Article  PubMed  Google Scholar 

  41. Van Doormaal, M., et al. Inputs for subject-specific computational fluid dynamics simulation of blood flow in the mouse aorta. J. Biomech. Eng. 136(10):101008, 2014.

    Article  PubMed  Google Scholar 

  42. Westerhof, N., et al. An artificial arterial system for pumping hearts. J. Appl. Physiol. 31:776–781, 1971.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Special Research Fund of Ghent University under Grant [BOF10/GOA/005] and by internal funds of the Laboratory of Hemodynamics and Cardiovascular Technology, EPFL. B.T. received a travel grant of the Flemish Fund for Scientific Research. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by Ghent University, the Hercules Foundation and the Flemish Government—department EWI.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Trachet.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Bram Trachet and Joris Bols contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trachet, B., Bols, J., Degroote, J. et al. An Animal-Specific FSI Model of the Abdominal Aorta in Anesthetized Mice. Ann Biomed Eng 43, 1298–1309 (2015). https://doi.org/10.1007/s10439-015-1310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1310-y

Keywords

Navigation