Skip to main content

Advertisement

Log in

The Association Between Curvature and Rupture in a Murine Model of Abdominal Aortic Aneurysm and Dissection

  • Sp Iss: Experimental Advances in Cardiovascular Biomechanics
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Mouse models of abdominal aortic aneurysm (AAA) and dissection have proven to be invaluable in the advancement of diagnostics and therapeutics by providing a platform to decipher response variables that are elusive in human populations. One such model involves systemic Angiotensin II (Ang-II) infusion into low density-lipoprotein receptor-deficient (LDLr−/−) mice leading to intramural thrombus formation, inflammation, matrix degradation, dilation, and dissection. Despite its effectiveness, considerable experimental variability has been observed in AAAs taken from our Ang-II infused LDLr−/− mice (n = 12) with obvious dissection occurring in 3 samples, outer bulge radii ranging from 0.73 to 2.12 mm, burst pressures ranging from 155 to 540 mmHg, and rupture location occurring 0.05 to 2.53 mm from the peak bulge location.

Objective

We hypothesized that surface curvature, a fundamental measure of shape, could serve as a useful predictor of AAA failure at supra-physiological inflation pressures.

Methods

To test this hypothesis, we fit well-known biquadratic surface patches to 360o micro-mechanical test data and used Spearman’s rank correlation (rho) to identify relationships between failure metrics and curvature indices.

Results

We found the strongest associations between burst pressure and the maximum value of the first principal curvature (rho = −0.591, p-val = 0.061), the maximum value of Mean curvature (rho = −0.545, p-val = 0.087), and local values of Mean curvature at the burst location (rho = −0.864, p-val = 0.001) with only the latter significant after Bonferroni correction. Additionally, the surface profile at failure was predominantly convex and hyperbolic (saddle-shaped) as indicated by a negative sign in the Gaussian curvature. Findings reiterate the importance of shape in experimental models of AAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Weiford BC (2005) Braunwald’s heart disease: a textbook of cardiovascular medicine. JAMA J Am Med Assoc 294:376–376

    Article  Google Scholar 

  2. Elefteriades JA, Olin JW, Halperin JL (2011) Chapter 106. Diseases of the aorta. In: Fuster V, Walsh RA, Harrington RA (eds) Hurst’s the heart, 13th edn. The McGraw-Hill Companies, New York

    Google Scholar 

  3. Mamkin I, Heitner JF (2011) Chapter 22. Diseases of the aorta. In: Pahlm O, Wagner GS (eds) Multimodal cardiovascular imaging: principles and clinical applications. The McGraw-Hill Companies, New York

    Google Scholar 

  4. Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40:1887–1902. https://doi.org/10.1016/j.jbiomech.2006.09.003

    Article  Google Scholar 

  5. Sacks MS, Vorp D a, Raghavan ML, et al (1999) In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann Biomed Eng 27:469–479

  6. Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM (2011) Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol 8:92–102. https://doi.org/10.1038/nrcardio.2010.180

    Article  Google Scholar 

  7. Kent KC, Zwolak RM, Jaff MR, Hollenbeck ST, Thompson RW, Schermerhorn ML, Sicard GA, Riles TS, Cronenwett JL, Society for Vascular Surgery, American Association of Vascular Surgery, Society for Vascular Medicine and Biology (2004) Screening for abdominal aortic aneurysm: a consensus statement. J Vasc Surg 39:267–269. https://doi.org/10.1016/j.jvs.2003.08.019

    Article  Google Scholar 

  8. Timaran CH, Veith FJ, Rosero EB, Modrall JG, Arko FR, Clagett GP, Valentine RJ (2007) Endovascular aortic aneurysm repair in patients with the highest risk and in-hospital mortality in the United States. Arch Surg 142:520–524; discussion 524-5. https://doi.org/10.1001/archsurg.142.6.520

    Article  Google Scholar 

  9. Brady AR, Brown LC, Fowkes FGR et al (2002) Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med 346:1445–1452. https://doi.org/10.1056/NEJMoa013527

    Article  Google Scholar 

  10. Koskas F, Kieffer E (1997) Long-term survival after elective repair of infrarenal abdominal aortic aneurysm: results of a prospective multicentric study. Ann Vasc Surg 11:473–481

    Article  Google Scholar 

  11. Lund GB, Trerotola SO, Scheel PJ (1995) Percutaneous translumbar inferior vena cava cannulation for hemodialysis. Am J Kidney Dis 25:732–737. https://doi.org/10.1016/0272-6386(95)90549-9

    Article  Google Scholar 

  12. Dobrin PB (1989) Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg Clin North Am 69:687–703

    Article  Google Scholar 

  13. Lee K, Zhu J, Shum J, Zhang Y, Muluk SC, Chandra A, Eskandari MK, Finol EA (2013) Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis. Ann Biomed Eng 41:562–576. https://doi.org/10.1007/s10439-012-0691-4

    Article  Google Scholar 

  14. Urrutia J, Roy A, Raut SS, Antón R, Muluk SC, Finol EA (2018) Geometric surrogates of abdominal aortic aneurysm wall mechanics. Med Eng Phys 59:43–49. https://doi.org/10.1016/j.medengphy.2018.06.007

    Article  Google Scholar 

  15. Martufi G, Gasser TC, Appoo JJ, Di Martino ES (2014) Mechano-biology in the thoracic aortic aneurysm: a review and case study. Biomech Model Mechanobiol 13:917–928. https://doi.org/10.1007/s10237-014-0557-9

    Article  Google Scholar 

  16. Gray A (1998) Modern differential geometry of curves and surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  17. Elger DF, Blackketter DM, Budwig RS, Johansen KH (1996) The influence of shape on the stresses in model abdominal aortic aneurysms. J Biomech Eng 118:326–332. https://doi.org/10.1115/1.2796014

    Article  Google Scholar 

  18. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  19. Martufi G, Di Martino ES, Amon CH et al (2009) Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng 131:1–11. https://doi.org/10.1115/1.3127256

    Article  Google Scholar 

  20. Shum J, Martufi G, Di Martino E et al (2011) Quantitative assessment of abdominal aortic aneurysm geometry. Ann Biomed Eng 39:277–286. https://doi.org/10.1007/s10439-010-0175-3

    Article  Google Scholar 

  21. Goergen CJ, Barr KN, Huynh DT, Eastham-Anderson JR, Choi G, Hedehus M, Dalman RL, Connolly AJ, Taylor CA, Tsao PS, Greve JM (2010) In vivo quantification of murine aortic cyclic strain, motion, and curvature: implications for abdominal aortic aneurysm growth. J Magn Reson Imaging 32:847–858. https://doi.org/10.1002/jmri.22331

    Article  Google Scholar 

  22. Daugherty A, Cassis LA (2004) Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 24:429–434. https://doi.org/10.1161/01.ATV.0000118013.72016.ea

    Article  Google Scholar 

  23. Lane BA, Wang X, Lessner SM, Vyavahare NR, Eberth JF (2020) Targeted gold nanoparticles as an Indicator of mechanical damage in an Elastase model of aortic aneurysm. Ann Biomed Eng 48:2268–2278. https://doi.org/10.1007/s10439-020-02500-5

    Article  Google Scholar 

  24. Daugherty A, Manning MWW, Cassis LAA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612. https://doi.org/10.1172/JCI7818

    Article  Google Scholar 

  25. Liu J, Sawada H, Howatt DA et al (2020) Hypercholesterolemia accelerates both the initiation and progression of angiotensin II-induced abdominal aortic aneurysms. Ann Vasc Med Res 6:1099

    Google Scholar 

  26. Cassis LA, Gupte M, Thayer S, Zhang X, Charnigo R, Howatt DA, Rateri DL, Daugherty A (2009) ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Circ Physiol 296:H1660–H1665. https://doi.org/10.1152/ajpheart.00028.2009

    Article  Google Scholar 

  27. Phillips EH, Yrineo AA, Schroeder HD, Wilson KE, Cheng JX, Goergen CJ (2015, 2015) Morphological and biomechanical differences in the elastase and AngII apoE −/− rodent models of abdominal aortic aneurysms. Biomed Res Int 2015:–12. https://doi.org/10.1155/2015/413189

  28. Bersi MR, Acosta Santamaría VA, Marback K, di Achille P, Phillips EH, Goergen CJ, Humphrey JD, Avril S (2020) Multimodality imaging-based characterization of regional material properties in a murine model of aortic dissection. Sci Rep 10:9244. https://doi.org/10.1038/s41598-020-65624-7

    Article  Google Scholar 

  29. Saraff K, Babamusta F, Cassis LA, Daugherty A (2003) Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23:1621–1626. https://doi.org/10.1161/01.ATV.0000085631.76095.64

    Article  Google Scholar 

  30. Phillips EH, Lorch AH, Durkes AC, Goergen CJ (2018) Early pathological characterization of murine dissecting abdominal aortic aneurysms. APL Bioeng 2:046106. https://doi.org/10.1063/1.5053708

    Article  Google Scholar 

  31. Adelsperger AR, Phillips EH, Ibriga HS et al (2018) Development and growth trends in angiotensin II-induced murine dissecting abdominal aortic aneurysms. Physiol Rep 6:1–17. https://doi.org/10.14814/phy2.13668

    Article  Google Scholar 

  32. Sacks MS, Chuong CJ, Templeton GH, Peshock R (1993) In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann Biomed Eng 21:263–275

    Article  Google Scholar 

  33. Wang X, Lane BA, Eberth JF, Lessner SM, Vyavahare NR (2019) Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm. Theranostics 9:4156–4167. https://doi.org/10.7150/thno.34441

    Article  Google Scholar 

  34. Lane BA, Lessner SM, Vyavahare NR, Sutton MA, Eberth JF (2020) Null strain analysis of submerged aneurysm analogues using a novel 3D stereomicroscopy device. Comput Methods Biomech Biomed Engin 23:332–344. https://doi.org/10.1080/10255842.2020.1724974

    Article  Google Scholar 

  35. Vorp DA, Raghavan ML, Webster MW (1998) Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg 27:632–639

    Article  Google Scholar 

  36. Chauhan SS, Gutierrez CA, Thirugnanasambandam M, de Oliveira V, Muluk SC, Eskandari MK, Finol EA (2017) The association between geometry and wall stress in emergently repaired abdominal aortic aneurysms. Ann Biomed Eng 45:1908–1916

    Article  Google Scholar 

  37. Yamada H, Hasegawa Y (2007) A simple method of estimating the stress acting on a bilaterally symmetric abdominal aortic aneurysm. Comput Methods Biomech Biomed Engin 10:53–61. https://doi.org/10.1080/10255840601086531

    Article  Google Scholar 

  38. Azar D, Ohadi D, Rachev A, Eberth JF, Uline MJ, Shazly T (2018) Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: a computational study. PLoS One 13:e0192032. https://doi.org/10.1371/journal.pone.0192032

    Article  Google Scholar 

  39. Collins MJ, Eberth JF, Wilson E, Humphrey JD (2012) Acute mechanical effects of elastase on the infrarenal mouse aorta: implications for models of aneurysms. J Biomech 45:660–665. https://doi.org/10.1016/j.jbiomech.2011.12.013

    Article  Google Scholar 

  40. Aslanidou L, Ferraro M, Lovric G, Bersi MR, Humphrey JD, Segers P, Trachet B, Stergiopulos N (2019) Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice. Biomech Model Mechanobiol 19:81–97. https://doi.org/10.1007/s10237-019-01197-3

    Article  Google Scholar 

  41. Vorp DA, Vande Geest JP (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol 25:1558–1566. https://doi.org/10.1161/01.ATV.0000174129.77391.55

    Article  Google Scholar 

  42. Di Martino E, Mantero S, Inzoli F et al (1998) Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg 15:290–299

    Article  Google Scholar 

  43. Parikh SA, Gomez R, Thirugnanasambandam M, Chauhan SS, de Oliveira V, Muluk SC, Eskandari MK, Finol EA (2018) Decision tree based classification of abdominal aortic aneurysms using geometry quantification measures. Ann Biomed Eng 46:2135–2147

    Article  Google Scholar 

  44. Wu W, Rengarajan B, Thirugnanasambandam M, Parikh S, Gomez R, de Oliveira V, Muluk SC, Finol EA (2019) Wall stress and geometry measures in electively repaired abdominal aortic aneurysms. Ann Biomed Eng 47:1611–1625

    Article  Google Scholar 

  45. Rengarajan B, Wu W, Wiedner C et al (2020) A comparative classification analysis of abdominal aortic aneurysms by machine learning algorithms. Ann Biomed Eng 1–11

  46. Goergen CJ, Azuma J, Barr KN, Magdefessel L, Kallop DY, Gogineni A, Grewall A, Weimer RM, Connolly AJ, Dalman RL, Taylor CA, Tsao PS, Greve JM (2011) Influences of aortic motion and curvature on vessel expansion in murine experimental aneurysms. Arterioscler Thromb Vasc Biol 31:270–279. https://doi.org/10.1161/ATVBAHA.110.216481

    Article  Google Scholar 

  47. Collins MJ, Bersi M, Wilson E, Humphrey JD (2011) Mechanical properties of suprarenal and infrarenal abdominal aorta: implications for mouse models of aneurysms. Med Eng Phys 33:1262–1269. https://doi.org/10.1016/j.medengphy.2011.06.003

    Article  Google Scholar 

  48. Prim DA, Mohamed MA, Lane BA, Poblete K, Wierzbicki MA, Lessner SM, Shazly T, Eberth JF (2018) Comparative mechanics of diverse mammalian carotid arteries. PLoS One 13:e0202123

    Article  Google Scholar 

  49. Cox RH (1978) Passive mechanics and connective tissue composition of canine arteries. Am J Phys 234:H533–H541

    Google Scholar 

  50. Goergen CJ, Johnson BL, Greve JM, Taylor CA, Zarins CK (2007) Increased anterior abdominal aortic wall motion: possible role in aneurysm pathogenesis and design of endovascular devices. J Endovasc Ther 14:574–584. https://doi.org/10.1583/1545-1550(2007)14[574:IAAAWM]2.0.CO;2

    Article  Google Scholar 

  51. Zhou B, Alshareef M, Prim DA, Collins M, Kempner M, Hartstone-Rose A, Eberth JF, Rachev A, Shazly T (2016) The perivascular environment along the vertebral artery governs segment-specific structural and mechanical properties. Acta Biomater 45:286–295. https://doi.org/10.1016/j.actbio.2016.09.004

    Article  Google Scholar 

  52. Watson S, Liu P, Peña EA et al (2016) Comparison of aortic collagen Fiber angle distribution in mouse models of atherosclerosis using second-harmonic generation (SHG) microscopy. Microsc Microanal 22:55–62. https://doi.org/10.1017/S1431927615015585

    Article  Google Scholar 

  53. Zhou B, Prim DA, Romito EJ, McNamara LP, Spinale FG, Shazly T, Eberth JF (2018) Contractile smooth muscle and active stress generation in porcine common carotids. J Biomech Eng 140:014501. https://doi.org/10.1115/1.4037949

    Article  Google Scholar 

  54. Genovese K, Collins M, Lee Y, Humphrey JD (2012) Regional finite strains in an angiotensin-II induced mouse model of dissecting abdominal aortic aneurysms. Cardiovasc Eng Technol 3:194–202

    Article  Google Scholar 

  55. Bersi MR, Bellini C, Di Achille P et al (2016) Novel methodology for characterizing regional variations in the material properties of murine aortas. J Biomech Eng 138:71005–71015

    Article  Google Scholar 

  56. Smith DB, Sacks MS, Vorp DA, Thornton M (2000) Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann Biomed Eng 28:598–611. https://doi.org/10.1114/1.1306342

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the statistical guidance provided by Dr. Jan M. Eberth, the conceptual contributions of Dr. Susan M. Lessner, and the technical assistance of Liya Du to this project.

Funding

This work was supported by the National Institutes of Health under grant number R01HL133662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.F. Eberth.

Ethics declarations

Conflict of Interest

The authors have no competing conflicts of interest that could have influenced the findings of this paper. All animal procedures were approved by the Clemson University Institutional Animal Care and Use Committee (IACUC).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, B., Uline, M., Wang, X. et al. The Association Between Curvature and Rupture in a Murine Model of Abdominal Aortic Aneurysm and Dissection. Exp Mech 61, 203–216 (2021). https://doi.org/10.1007/s11340-020-00661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00661-x

Keywords

Navigation