Skip to main content
Log in

Impaired erythrocyte deformability in transgenic HO-1G143H mutant mice

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To investigate the potential effects of variation of HO-1 activity on hemorheology, this study compared the hemorheological properties between transgenic HO-1G143H mutant mice and wild-type (WT) control mice. Fresh blood samples were obtained from mice via the ocular venous sinus. The whole blood viscosity was measured using a cone–plate viscometer. Erythrocyte deformability and aggregation was measured using ektacytometry. The elongation index was significantly reduced in the HO-1G143H mutant mice compared to the WT mice at the shear rates of 600, 800, and 1,000 s−1. The integrated elongation index was decreased in the HO-1G143H mutant mice compared to the WT mice. There was no statistically significant difference between the HO-1G143H mutant mice and the WT mice in terms of whole blood viscosity, aggregation index, amplitude of aggregation, and aggregation half time. The present study demonstrated that a reduction in HO-1 activity results in an impaired erythrocyte deformability. Although the mechanism underlying this effect remains unclear, our study brings to light the participation of HO-1 in the variations of hemorheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allard C, Mohandas N, Bessis M (1978) Red cell deformability changes in hemolytic anemias estimated by diffractometric methods (ektacytometry) preliminary results. In: Bessis M, Shohet S, Mohandas N (eds) Red Cell Rheology. Springer, Berlin, pp 209–221

    Chapter  Google Scholar 

  • Aydogan S, Yapislar H, Artis S, Aydogan B (2008) Impaired erythrocytes deformability in H2O2-induced oxidative stress: protective effect of L-carnosine. Clin Hemorheol Microcirc 39(1):93–98

    CAS  PubMed  Google Scholar 

  • Bao W, Song F, Li X, Rong S, Yang W, Wang D, Xu J, Fu J, Zhao Y, Liu L (2010) Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol 172(6):631–636

    Article  PubMed  Google Scholar 

  • Baskurt OK, Temiz A, Meiselman HJ (1998) Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 24(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Bor-Kucukatay M, Wenby RB, Meiselman HJ, Baskurt OK (2003) Effects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol 284(5):1577–1584

    Google Scholar 

  • Chen G, Zhao L, Liu Y, Liao F, Han D, Zhou H (2012a) Regulation of blood viscosity in disease prevention and treatment. Chin Sci Bull 57(16):1946–1952

    Article  Google Scholar 

  • Chen M, Zhou L, Ding H, Huang S, He M, Zhang X, Cheng L, Wang D, Hu FB, Wu T (2012b) Short (GT) (n) repeats in heme oxygenase-1 gene promoter are associated with lower risk of coronary heart disease in subjects with high levels of oxidative stress. Cell Stress Chaperones 17(3):329–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cicco G, Pirrelli A (1999) Red blood cell (RBC) deformability, RBC agreeability and tissue oxygenation in hypertension. Clin Hemorheol Microcirc 21(3):169–177

    CAS  PubMed  Google Scholar 

  • Cicha I, Suzuki Y, Tateishi N, Maeda N (1999) Rheological changes in human red blood cells under oxidative stress. Pathophysiology 6(2):103–110

    Article  Google Scholar 

  • Exner M, Minar E, Wagner O, Schillinger M (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37(8):1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  PubMed  Google Scholar 

  • Hach T, Forst T, Kunt T, Ekberg K, Pfutzner A, Wahren J (2008) C-peptide and its C-terminal fragments improve erythrocyte deformability in type 1 diabetes patients. Exp Diabetes Res 2008:730594

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardeman MR, Dobbe JGG, Ince C (2001) The laser-assisted optical rotational cell analyzer (LORCA) as red blood cell aggregometer. Clin Hemorheol Microcirc 25(1):1–11

    CAS  PubMed  Google Scholar 

  • Huang S, Amaladoss A, Liu M, Chen H, Zhang R, Preiser PR, Dao M, Han J (2014) In vivo splenic clearance correlates with in vitro deformability of red blood cells from Plasmodium yoelii-infected mice. Infect Immun 82(6):2532–2541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Immenschuh S, Schroder H (2006) Heme oxygenase-1 and cardiovascular disease. Histol Histopathol 21(6):679–685

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Sugawara D, Wang X-p, Suzuki K, Itabe H, Maruyama Y, Lusis AJ (2001) Heme oxygenase-1 inhibits atherosclerotic lesion formation in LDL-receptor knockout mice. Circ Res 88(5):506–512

    Article  CAS  PubMed  Google Scholar 

  • Jovtchev S, Djenev I, Stoeff S, Stoylov S (2000) Role of electrical and mechanical properties of red blood cells for their aggregation. Colloids Surf Physicochem Eng Aspects 164(2–3):95–104

    Article  CAS  Google Scholar 

  • Kaneda H, Ohno M, Taguchi J, Togo M, Hashimoto H, Ogasawara K, Aizawa T, Ishizaka N, Nagai R (2002) Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors. Arterioscler Thromb Vasc Biol 22(10):1680–1685

    Article  CAS  PubMed  Google Scholar 

  • Kawashima A, Oda Y, Yachie A, Koizumi S, Nakanishi I (2002) Heme oxygenase–1 deficiency: the first autopsy case. Hum Pathol 33(1):125–130

    Article  PubMed  Google Scholar 

  • Keymel S, Heiss C, Kleinbongard P, Kelm M, Lauer T (2011) Impaired red blood cell deformability in patients with coronary artery disease and diabetes mellitus. Horm Metab Res 43(11):760–765

    Article  CAS  PubMed  Google Scholar 

  • Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA (2010) Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116(26):6054–6062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Wang B, Yin Y, Chen G, Wang W, Gao X, Wang P, Zhou H (2013) Overexpressions of HO-1/HO-1G143H in C57/B6 J mice affect melanoma B16F10 lung metastases rather than change the survival rate of mice-bearing tumours. Exp Biol Med 238(6):696–704

    Article  Google Scholar 

  • MacRury SM, Lowe GDO (1990) Blood rheology in diabetes mellitus. Diabet Med 7(4):285–291

    Article  CAS  PubMed  Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616

    Article  CAS  PubMed  Google Scholar 

  • Mohanty JG, Nagababu E, Friedman JS, Rifkind JM (2013) SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation. Exp Hematol 41(3):316–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muralidharan E, Tateishi N, Maeda N (1994) Simultaneous influence of erythrocyte deformability and macromolecules in the medium on erythrocyte aggregation: a kinetic study by a laser scattering technique. BBA—Biomembranes 1194(2):255–263

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathi K, Lipowsky HH (1999) Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol 277(6):H2145–H2157

    CAS  PubMed  Google Scholar 

  • Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94(20):10919–10924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhart WH, Singh A (1990) Erythrocyte aggregation: the roles of cell deformability and geometry. Eur J Clin Invest 20(4):458–462

    Article  CAS  PubMed  Google Scholar 

  • Rogausch H (1973) Influence of erythrocyte deformability on circulation. Res Exp Med (Berl) 160(2):89–94

    Article  CAS  Google Scholar 

  • Simchon S, Jan KM, Chien S (1987) Influence of reduced red cell deformability on regional blood flow. Am J Physiol Heart Circ Physiol 253(4):H898–H903

    CAS  Google Scholar 

  • Soares MP, Bach FH (2009) Heme oxygenase-1: from biology to therapeutic potential. Trends Mol Med 15(2):50–58

    Article  CAS  PubMed  Google Scholar 

  • True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N, Xu X, Lynn EG, Sack MN, Munson PJ, Gladwin MT, Nabel EG (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res 101(9):893–901

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57(4):585–630

    Article  CAS  PubMed  Google Scholar 

  • Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103(1):129–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang ZC, Xia K, Wang L, Jia SJ, Li D, Zhang Z, Deng S, Zhang XH, Deng HW, Li YJ (2007) Asymmetric dimethylarginine reduced erythrocyte deformability in streptozotocin-induced diabetic rats. Microvasc Res 73(2):131–136

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Zou C, Ma N, Hui Y, Lv G, Zhang H, Zhou H, Gao X (2011) The effect of the Gly139His, Gly143His, and Ser142His mouse heme oxygenase-1 mutants on the HO reaction in vivo and in vitro. Anat Rec 294(1):112–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31271001) and the National High Technology Research and Development Program of China (No. 2012AA021902).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian Zhao or Hong Zhou.

Additional information

Gan Chen and Yujing Yin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Yin, Y., Wang, B. et al. Impaired erythrocyte deformability in transgenic HO-1G143H mutant mice. Transgenic Res 24, 173–178 (2015). https://doi.org/10.1007/s11248-014-9829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9829-5

Keywords

Navigation