Skip to main content
Log in

Surface Fluorescence Studies of Tissue Mitochondrial Redox State in Isolated Perfused Rat Lungs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21 and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect on RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue health in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aldakkak, M., et al. Modulation of mitochondrial bioenergetics in the isolated Guinea pig beating heart by potassium and lidocaine cardioplegia: implications for cardioprotection. J. Cardiovasc. Pharmacol. 54:298–309, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Aldrich, T. K., et al. Paraquat inhibits mixed-function oxidation by rat lung. J. Appl. Physiol. 54:1089–1093, 1983.

    PubMed  CAS  Google Scholar 

  3. Allen, C. B., and C. W. White. Glucose modulates cell death due to normobaric hyperoxia by maintaining cellular ATP. Am. J. Physiol. 274:L159–L164, 1998.

    PubMed  CAS  Google Scholar 

  4. Audi, S. H., et al. Duroquinone reduction during passage through the pulmonary circulation. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L1116–L1131, 2003.

    PubMed  CAS  Google Scholar 

  5. Audi, S. H., et al. Coenzyme Q1 redox metabolism during passage through the rat pulmonary circulation and the effect of hyperoxia. J. Appl. Physiol. 105:1114–1126, 2008.

    Article  PubMed  CAS  Google Scholar 

  6. Balaban, R. S., and L. J. Mandel. Coupling of aerobic metabolism to active ion transport in the kidney. J. Physiol. 304:331–348, 1980.

    PubMed  CAS  Google Scholar 

  7. Barlow, C. H., et al. Fluorescence mapping of mitochondrial redox changes in heart and brain. Crit. Care Med. 7:402–406, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Boldt, M., et al. A sensitive dual wavelength microspectrophotometer for the measurement of tissue fluorescence and reflectance. Pflugers Arch. 385:167–173, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Brandes, R., and D. M. Bers. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys. J. 71:1024–1035, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Chance, B., and H. Baltscheffsky. Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide. J. Biol. Chem. 233:736–739, 1958.

    PubMed  CAS  Google Scholar 

  11. Chance, B., et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J. Biol. Chem. 254:4764–4771, 1979.

    PubMed  CAS  Google Scholar 

  12. Commoner, B., and D. Lipkin. The application of the Beer-Lambert law to optically anisotropic systems. Science 110:41–43, 1949.

    Article  PubMed  CAS  Google Scholar 

  13. Crapo, J. D., et al. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis. 122:123–143, 1980.

    PubMed  CAS  Google Scholar 

  14. De Blasi, R. A., et al. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J. Appl. Physiol. 76:1388–1393, 1994.

    PubMed  Google Scholar 

  15. Else, P. L., and A. J. Hulbert. Mammals: an allometric study of metabolism at tissue and mitochondrial level. Am. J. Physiol. 248:R415–R421, 1985.

    PubMed  CAS  Google Scholar 

  16. Eng, J., et al. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys. J. 55:621–630, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Fisher, A. B. Intermediary metabolism of the lung. Environ. Health Perspect. 55:149–158, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Fisher, A. B., et al. Evaluation of redox state of isolated perfused rat lung. Am. J. Physiol. 230:1198–1204, 1976.

    PubMed  CAS  Google Scholar 

  19. Fisher, A. B., et al. Pulmonary mixed-function oxidation: stimulation by glucose and the effects of metabolic inhibitors. Biochem. Pharmacol. 30:379–383, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Gan, Z., et al. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes. Am. J. Physiol. Lung Cell. Mol. Physiol. 300:L762–L772, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Gerich, F. J., et al. Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices. J. Neurophysiol. 96:492–504, 2006.

    Article  PubMed  Google Scholar 

  22. Kunz, W. S., and F. N. Gellerich. Quantification of the content of fluorescent flavoproteins in mitochondria from liver, kidney cortex, skeletal muscle, and brain. Biochem. Med. Metab. Biol. 50:103–110, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Kunz, W. S., and W. Kunz. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim. Biophys. Acta 841:237–246, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, Q., et al. Investigation of synchronous fluorescence method in multicomponent analysis in tissue. IEEE J. Sel. Top. Quantum Electron. 16:14, 2010.

    Google Scholar 

  25. Maleki, S., et al. Mitochondrial redox studies of oxidative stress in kidneys from diabetic mice. Biomed. Opt. Express 3:273–281, 2012.

    Article  PubMed  CAS  Google Scholar 

  26. Matsubara, M., et al. In vivo fluorometric assessment of cyclosporine on mitochondrial function during myocardial ischemia and reperfusion. Ann. Thorac. Surg. 89:1532–1537, 2010.

    Article  PubMed  Google Scholar 

  27. Mayevsky, A. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. 319:49–68, 1984.

    PubMed  CAS  Google Scholar 

  28. Meirovithz, E., et al. Effect of hyperbaric oxygenation on brain hemodynamics, hemoglobin oxygenation and mitochondrial NADH. Brain Res. Rev. 54:294–304, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Mycek, M. A., et al. Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest. Endosc. 48:390–394, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Nioka, S., et al. Simulation of Mb/Hb in NIRS and oxygen gradient in the human and canine skeletal muscles using H-NMR and NIRS. Adv. Exp. Med. Biol. 578:223–228, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Nuutinen, E. M. Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res. Cardiol. 79:49–58, 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Owen, M. R., et al. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348(Pt 3):607–614, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Ramanujam, N., et al. In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence. Proc. Natl Acad. Sci. USA 91:10193–10197, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Ramanujam, N., et al. Low temperature fluorescence imaging of freeze-trapped human cervical tissues. Opt. Express 8:335–343, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Ranji, M. Fluorescent images of mitochondrial redox states of in situ mouse hypoxic ischemic intestines. J. Innov. Opt. Health Sci. (JIOHS) 2:365–374, 2009.

    Article  Google Scholar 

  36. Ranji, M., et al. Fluorescence spectroscopy and imaging of myocardial apoptosis. J. Biomed. Opt. 11:064036, 2006.

    Article  PubMed  Google Scholar 

  37. Ranji, M., et al. Quantifying acute myocardial injury using ratiometric fluorometry. IEEE Trans. Biomed. Eng. 56:1556–1563, 2009.

    Article  PubMed  Google Scholar 

  38. Rocheleau, J. V., et al. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J. Biol. Chem. 279:31780–31787, 2004.

    Article  PubMed  CAS  Google Scholar 

  39. Sepehr, R., et al. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress. J. Biomed. Opt. 17:046010, 2012.

    Article  PubMed  Google Scholar 

  40. Vollmar, B., et al. A correlation of intravital microscopically assessed NADH fluorescence, tissue oxygenation, and organ function during shock and resuscitation of the rat liver. Adv. Exp. Med. Biol. 454:95–101, 1998.

    Article  PubMed  CAS  Google Scholar 

  41. Xia, L., et al. Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway. Eur. J. Biochem. 268:1486–1490, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Zmijewski, J. W., et al. Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am. J. Respir. Crit. Care Med. 178:168–179, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the support of University of Wisconsin Milwaukee RGI 6 Grant, Clinical and Translational Science Institute KL2 Grant: NIH 8Kl2TR000056, Wisconsin Applied Research grant (Wi-ARG), NIH Grants HL-24349 (SHA), HL 49294 (ERJ), and the Department of Veterans Affairs that provided resources essential to the completion of these investigations. We acknowledge the technical help from Dr. Steven Haworth in the Clement J. Zablocki VA, Milwaukee, WI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Ranji.

Additional information

Associate Editor Ender A Finol oversaw the review of this article.

Kevin Staniszewski, Said H. Audi, and Reyhaneh Sepehr contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staniszewski, K., Audi, S.H., Sepehr, R. et al. Surface Fluorescence Studies of Tissue Mitochondrial Redox State in Isolated Perfused Rat Lungs. Ann Biomed Eng 41, 827–836 (2013). https://doi.org/10.1007/s10439-012-0716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0716-z

Keywords

Navigation