Skip to main content
Log in

A unified analysis of a micro-beam, droplet and CNT ring adhered on a substrate: Calculation of variation with movable boundaries

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thoroughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materials, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bico, J., Roman, B., Moulin, L., et al.: Adhesion: Elastocapillary coalescence in wet hair. Nature 432, 690 (2004)

    Article  Google Scholar 

  2. Gao, H. J., Wang, X., Yao, H. M., et al.: Mechanics of hierarchical adhesion structure of gecko. Mechanics of Materials 37, 275–285 (2005)

    Article  Google Scholar 

  3. Maxwell, J. C.: Capillary Action. Encyclopaedia Britannica, Vol. II. Cambridge University Press, London (1980)

    Google Scholar 

  4. Clanet, C., Quere, D.: Onset of menisci. Journal of Fluid Mechnics 460, 131–149 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Liu, J. L.: Analogies between a meniscus and a cantilever. Chinese Physics Letters 26, 116803 (2009)

    Article  Google Scholar 

  6. Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79, 667–677 (1997)

    Article  Google Scholar 

  7. Hu, D. L., Chan, B., Bush, J. W.: The hydrodynamics of water strider locomotion. Nature 424, 663–666 (2004)

    Article  Google Scholar 

  8. Wu, C. W., Kong, X. Q., Wu, D.: Micronanostructures of the scales on a mosquito’s legs and their role in support. Physical Review E 76, 017301 (2007)

    Article  Google Scholar 

  9. Mlot, N. J., Tovey, C. A., Hu, D. L.: Fire ants self-assemble into waterproof rafts to survive floods. Proceedings of the National Academy of Sciences 108, 7669–7673 (2011)

    Article  Google Scholar 

  10. Parker, A. R., Lawrence, C. R.: Water capture by a desert beetle. Nature 414, 33–34 (2001)

    Article  Google Scholar 

  11. Wenzel, R. N.: Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28, 988–994 (1936)

    Article  Google Scholar 

  12. Cassie, A. B. D., Baxter, S.: Wettability of porous surfaces. Transactions of Faraday Society 40, 546–551 (1944)

    Article  Google Scholar 

  13. Liu, J. L., Mei, Y., Xia, R.: A new wetting mechanism based upon triple contact line pinning. Langmuir 27, 196–200 (2011)

    Article  Google Scholar 

  14. Bormasshenko, E., Whyman, G.: Variational approach to wetting problems: calculation of a shape of sessile liquid drop deposited on a solid substrate in external field. Chemical Physics Letters 463, 103–105 (2008)

    Article  Google Scholar 

  15. Marmur, A.: Contact angles in constrained wetting. Langmuir 12, 5704–5708 (1996)

    Article  Google Scholar 

  16. Swain, P. S., Lipowsky, R.: Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzels laws. Langmuir 14, 6772–6780 (1998)

    Article  Google Scholar 

  17. Hui, C. Y., Jagota, A., Lin, Y. Y., et al.: Constaints on microcontact printing imposed by stamp formation. Langmuir 18, 1394–1407 (2002)

    Article  Google Scholar 

  18. De Boer, M. P., Michalske, T. A.: Accurate method for determining adhesion of cantilever beams. Journal of Applied Physics 86, 817–827 (1999)

    Article  Google Scholar 

  19. Mastrangelo, C. H., Hsu, C. H.: Mechanical stability and adhesion of microstructures under capillary forces, part II: Experiments. Journal of Microelectromechanical Systems 2, 44–55 (1993)

    Article  Google Scholar 

  20. Liu, J. L.: Theoretical analysis on capillary adhesion of microsized plates with a substrate. Acta Mechanica Sinica 26, 217–223 (2010)

    Article  MathSciNet  Google Scholar 

  21. Zhao, Y. P., Wang, L. S., Yu, T. X.: Mechanics of adhesion in MEMS: A review. Journal of Adhesion Science and Technology 17, 519–546 (2003)

    Article  Google Scholar 

  22. Wang, Z. L., Song, J. H.: Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  23. Baughman, R. H., Zakhidov, A. A., de Heer, W. A.: Carbon nanotubes: The route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  24. Zheng, M., Ke, C. H.: Mechanical deformation of carbon nanotube nano-rings on flat substrate. Journal of Applied Physics 109, 074304 (2011)

    Article  Google Scholar 

  25. Hertel, T., Walkup, R. E., Avouris, P.: Deformation of carbon nanotubes by surface van der Waals forces. Physical Review B 58, 13870–13873 (1998)

    Article  Google Scholar 

  26. Pantano, A., Parks, D. M., Boyce, M. C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids 52, 789–821 (2004)

    Article  MATH  Google Scholar 

  27. Pugno, N. M.: An analogy between the adhesion of liquid drops and single walled nanotubes. Scripta Materialia 58, 73–75 (2008)

    Article  Google Scholar 

  28. Roman, B., Gay, C., Clanet, C.: Pendulum, drops and rods: A physical analogy. http://www.pmmh.espci.fr/benoit/publi.html

  29. Majidi, C.: Remarks on formulating an adhesion problem using Euler’s elastica (draft). Mechanics Research Communications 34, 85–90 (2006)

    Article  MathSciNet  Google Scholar 

  30. Roman, B., Bico, J.: Elasto-capillarity: deforming an elastic structure with a liquid drop. Journal of Physics: Condensed Matter 22, 493101 (2010)

    Article  Google Scholar 

  31. Rice, J. R.: A path independent integral and the approximate analysis of strain concentration. Journal of Applied Mechanics 35, 379–386 (1968)

    Article  Google Scholar 

  32. Tang, T., Jagota, A., Hui, C. Y.: Adhesion between singlewalled carbon nanotubes. Journal of Applied Physics 97, 074304 (2005)

    Google Scholar 

  33. Zhou, W., Huang, Y., Liu, B., et al.: Self-folding of singleand multiwall carbon nanotubes. Applied Physics Letters 90, 073107 (2007)

    Google Scholar 

  34. Seifert, U.: Adhesion of vesicles in two dimensions. Physical Review A 43, 6803–6814 (1991)

    Article  MathSciNet  Google Scholar 

  35. Oyharcabal, X., Frisch, T.: Peeling off an elastica from a smooth attractive substrate. Physical Review E 71, 036611 (2005)

    Article  Google Scholar 

  36. Makowski, J. D., Gawarikar, A. S., Talghader, J. J.: Adhesion energy in nanogap InP/InGaAs microcantilevers. Applied Physics Letters 89, 243508 (2006)

    Article  Google Scholar 

  37. Tang, T., Glassmaker, N. J.: On the Inextensible ElasticaModel for the Collapse of Nanotubes. Mathematics and Mechanics of Solids 15, 591–606 (2010)

    Article  MATH  Google Scholar 

  38. Liu, B., Yu, M. F., Huang, Y.: Role of lattice registry in the full collapse and twist formation of carbon nanotubes. Physical Review B 70, 161402 (2004)

    Article  Google Scholar 

  39. Tang, T., Jagota, A., Hui, C. Y., et al.: Collapse of single-walled carbon nanotubes. Journal of Applied Physics 97, 074310 (2005)

    Article  Google Scholar 

  40. Buehler, M. J., Kong, Y., Gao, H., et al.: Self-folding and unfolding of carbon nanotubes. Journal of Engineering Materials and Technology 128, 3–10 (2006)

    Article  Google Scholar 

  41. Mikata, Y.: Approximate solutions for a self-folding problem of carbon nanotubes. Journal of Engineering Materials and Technology 132, 011013 (2010)

    Article  Google Scholar 

  42. Glassmaker, N. J., Hui, C. Y.: Elastica solution for a nanotube formed by self-adhesion of a folded thin film. Journal of Applied Physics 96, 3429–3444 (2004)

    Article  Google Scholar 

  43. Bishopp, K. E., Drucker, D. C.: Large deflection of cantilever beams. Quarterly of Applied Mathematics 3, 272–275 (1945)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Lin Liu or Re Xia.

Additional information

The project was supported by the National Natural Science Foundation of China (11272357 and 11102140), Doctoral Fund of Ministry of Education of China (200804251520 and 20110141120024) and Natural Science Foundation of Shandong Province (ZR2009AQ006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JL., Xia, R. A unified analysis of a micro-beam, droplet and CNT ring adhered on a substrate: Calculation of variation with movable boundaries. Acta Mech Sin 29, 62–72 (2013). https://doi.org/10.1007/s10409-012-0202-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0202-8

Keywords

Navigation