Skip to main content
Log in

A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The tip charge concentration and rippling phenomenon can substantially affect the electromechanical performance of actuators fabricated from cantilever carbon nanotube (CNT). However, these important phenomena are often ignored in the theoretical beam models. In this article, the influence of rippling deformation, Casimir attraction and tip concentration charge on the dynamic pull-in characteristics of nanotube actuators is investigated using a modified Euler–Bernoulli beam theory. To express the Casimir attraction of cylinder-plate geometry, two approaches e.g. proximity force approximation (PFA) for small separations and Drichlet asymptotic approximation for large separations are considered. The charge concentration at the CNT tip is included in the governing equation using Dirac delta function. It is demonstrated that the rippling deformation and tip charge concentration can substantially decrease the dynamic pull-in voltage of the nano-actuator. The rippling deformation of CNT increases the pull-in time while the concentrated charge at the CNT end reduces the pull-in time of the nano-system. Results of the present study are beneficial to precise design and fabrication of electromechanical CNT actuators. Comparison between the obtained results and those reported in the literature by experiments and molecular dynamics, verifies the integrity of the present analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abbasnejad B, Rezazadeh G, Shabani R (2013) Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech Solida Sin 26(4):427–440

    Article  Google Scholar 

  • Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91:215505

    Article  Google Scholar 

  • Bordag M, Mohideen U, Mostepanenko VM (2001a) New developments in the Casimir effect. Phys Rep 353:1–205

    Article  MathSciNet  MATH  Google Scholar 

  • Bordag M, Mohideen U, Mostepanenko VM (2001b) New developments in the Casimir effect. Phys Rep 353:1

    Article  MathSciNet  MATH  Google Scholar 

  • Bulgac A, Magierski P, Wirzba A (2006) Scalar Casimir effect between Dirichlet spheres or a plate and a sphere. Phys Rev D 73:025007

  • Buscher R, Emig T (2005) Geometry and spectrum of Casimir forces. Phys Rev Lett 94:133901

    Article  Google Scholar 

  • Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51:793

    MATH  Google Scholar 

  • Casimir HBG, Polder D (1948) The influence of retardation of the London-van der Waals forces. Phys Rev Lett 73:360

    MATH  Google Scholar 

  • Chan HB, Bao Y, Zou J, Cirelli RA, Klemens F, Mansfield WM, Pai CS (2008) measurements of the Casimir force between a gold sphere and a silicon surface with nanoscale v trench arrays. Phys Rev Lett 101:030401

    Article  Google Scholar 

  • Dequesnes M, Rotkin SV, Aluru NR (2002) Parameterization of continuum theories for single wall carbon nanotube switches by molecular dynamics simulations. J Comput Electron 1(3):313–316

    Article  Google Scholar 

  • Dequesnes M, Tang Z, Aluru NR (2004) Static and dynamic analysis of carbon nanotube-based switches. J Eng Mater Technol 126(3):230–237

    Article  Google Scholar 

  • Desquenes M, Rotkin SV, Alaru NR (2002) Calculation of pull-in voltages for carbonnanotube based nanoelectromechanical switches. Nanotechnology 13:120–131

    Article  Google Scholar 

  • Emig T, Jaffe RL, Kardar M, Scardicchio A (2006) Casimir interaction between a plate and a cylinder. Phys Rev Lett 96:080403

    Article  Google Scholar 

  • Farrokhabadi A, Koochi A, Abadyan M (2014a) Modeling the instability of CNT tweezers using a continuum model. Microsyst Technol 20(2):291–302

    Article  Google Scholar 

  • Farrokhabadi A, Abadian N, Rach R, Abadyan M (2014b) Theoretical modelling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Physica E 63:67–80

    Article  Google Scholar 

  • Guo JG, Zhao YP (2004) Influence of van der Waals and Casimir forces on electrostatic torsional actuators. J Microelectromech Syst 13(6):1027

    Article  MathSciNet  Google Scholar 

  • Gupta SS, Batra RC (2008) Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput Mater Sci 43(4):715–723

    Article  Google Scholar 

  • Hayt WH, Buck JA (2001) Engineering electromagnetic, 6th edn. McGrawHill, New York

    Google Scholar 

  • Hwang HJ, Kang JW (2005) Carbon-nanotube-based nanoelectromechanical switch. Physica E 27:163–175

    Article  Google Scholar 

  • Jackson JD (1975) Classical Electrodynamics. Wiley, New York

    MATH  Google Scholar 

  • Kang JW, Kong SC, Hwang HJ (2006) Electromechanical analysis of suspended carbon nanotubes for memory applications. Nanotechnology 17:2127–2134

    Article  Google Scholar 

  • Ke C, Espinosa HD (2005) Numerical analysis of nanotube-based NEMS devices-part I: electrostatic charge distribution on multiwalled nanotubes. J Appl Mech 72(5):726–731

    Article  MATH  Google Scholar 

  • Ke C-H, Pugno N, Peng B, Espinosa HD (2005) Experiments and modeling of carbon nanotube-based NEMS devices. J Mech Phys Solids 53:1314–1333

    Article  MATH  Google Scholar 

  • Keblinski P, Nayak SK, Zapol P, Ajayan PM (2002) Charge distribution and stability of charged carbon nanotubes. Phys Rev Lett 89(25):255503

    Article  Google Scholar 

  • Koochi A, Fazli N, Rach R, Abadynan M (2014) Modeling the pull-in instability of the CNT-based probe/actuator under the Coulomb force and the van der Waals attraction. Latin Am J Solids Struct 11(8):1315–1328

    Article  Google Scholar 

  • Lamoreaux SK (2005) The Casimir force: background, experiments, and applications. Rep Prog Phys 68:201–236

    Article  Google Scholar 

  • Li C, Chou TW (2004) Mass detection using carbon nanotube-based nanomechanical resonators. Appl Phys Lett 84:5246

    Article  Google Scholar 

  • Li H, Kardar M (1998) Fluctuation-induced forces between rough surfaces. Phys Rev Lett 67:3275

    Article  Google Scholar 

  • Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbotn nanotubes and their composites: a review. Comp Sci Technol 68:1227–1249

    Article  Google Scholar 

  • Lin WH, Zhao YP (2005) Nonlinear behavior for nanoscales electrostatic actuators with Casimir force. Chaos, Solitons Fractals 23:1777

    Article  MATH  Google Scholar 

  • Loh OY, Espinosa HD (2012) Nanoelectromechanical contact switches. Nat Nanotechnol 7:283–295

    Article  Google Scholar 

  • Lombardo FC, Mazzitelli FD, Villar PI (2008) Numerical evaluation of the Casimir interaction between cylinders. Phys Rev D 78:085009

    Article  Google Scholar 

  • Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors-a review. IEEE Sens J 7(2):266–284

    Article  Google Scholar 

  • Mehdipour I, Barari A, Ganji DD (2012) Effects of rippling deformation and mid-plane stretching on non-linear vibration for embedded carbon nanotube. Int J Multiscale Comput Eng 10(3):295–305

    Article  Google Scholar 

  • Nakayama Y (2002) Scanning probe microscopy installed with nanotube probes and nanotube tweezers. Ultramicroscopy 91(1–4):49–56

    Article  Google Scholar 

  • Ouakad HM, Younis MI (2008) Nonlinear dynamics of electrically actuated carbon nanotube resonators. J Comput Nonlinear Dyn 5(1):011009

    Article  Google Scholar 

  • Rahi SJ, Emig T, Jaffe RL, Kardar M (2008) Casimir forces between cylinders and plates. Phys Rev A 78:012104

    Article  Google Scholar 

  • Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 73:085410

    Article  Google Scholar 

  • Sedighi HM, Daneshmand F (2014) Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He’s iteration perturbation method. J Mech Sci Technol 28(9):3459–3469

    Article  Google Scholar 

  • Soltani P, Ganji DD, Mehdipour I, Farshidianfar A (2012) Nonlinear vibration and rippling instability for embedded carbon nanotubes. J Mech Sci Technol 26(4):985–992

    Article  Google Scholar 

  • Teo LP (2011a) First analytic correction to the proximity force approximation in the Casimir effect between two parallel cylinders. Phys Rev D 84:065027

    Article  Google Scholar 

  • Teo LP (2011b) Casimir, interaction between a cylinder and a plate at finite temperature: exact results and comparison to proximity force approximation. Phys Rev D 84:025022

    Article  Google Scholar 

  • Wang Z (2009) Effects of substrate and electric fields on charges in carbon nanotubes. Phys Rev B 79:155407

    Article  Google Scholar 

  • Wang XY, Wang X (2004) Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Comp Part B 35:79–86

    Article  Google Scholar 

  • Wang X, Wang XY, Xiao J (2005) A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct 69:315–321

    Article  Google Scholar 

  • Zou J, Marcet Z, Rodriguez AW, Reid MTH, McCauley AP, Kravchenko II, Lu T, Bao Y, Johnson SG, Chan HB (2013) Casimir forces on a silicon micromechanical chip. Nature Commun 4:1845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Sedighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, H.M., Farjam, N. A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction. Microsyst Technol 23, 2175–2191 (2017). https://doi.org/10.1007/s00542-016-2956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2956-6

Keywords

Navigation