Skip to main content
Log in

Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Experimental observations reveal that the physical response of nanostructures is size-dependent. Herein, modified couple stress theory has been used to study the effect of intermolecular van der Waals force on the size dependent pull-in of nanobridges and nanocantilevers. Three approaches including using differential transformation method, applying numerical method and developing a simple lumped parameter model have been employed to solve the governing equation of the systems. The pull-in parameters i.e. critical tip deflection and instability voltage of the nanostructures have been determined. Effect of the van der Waals attraction and the size dependency and the importance of coupling between them on the pull-in performance have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Sedighi and K. H. Shirazi, Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method, Acta Astronautica, 85 (2013) 19–24.

    Article  Google Scholar 

  2. R. C. Batra, M. Porfiri and D. Spinello, Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force, Int. J. Solids Struct, 45 (2008) 3558–3583.

    Article  MATH  Google Scholar 

  3. M. Abadyan, A. Novinzadeh and A. S. Kazemi, Approximating the effect of the Casimir force on the instability of electrostatic nanocantilevers, Phys. Scr., 81 (2010) 015801 (10pp).

    Article  Google Scholar 

  4. A. Koochi, A. Noghrehabadi and M. Abadyan, Approximating the effect of van der Waals force on the instability of electrostatic nano-cantilevers, Int. J. Modern Phys, B 25 (29) (2011) 3965–3976.

    Article  MATH  Google Scholar 

  5. R. Soroush, A. Koochi, A. S. Kazemi and M. Abadyan, Modeling the effect of van der Waals attraction on the instability of electrostatic cantilever and doubly-supported nanobeams using modified Adomian method, Int. J. Struct. Stability Dyn., 12 (5) (2012) 1250036 (18 p).

    Article  MathSciNet  Google Scholar 

  6. H. M. Sedighi, Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory, Acta Astronautica, 95 (2014) 111–123.

    Article  Google Scholar 

  7. H. M. Sedighi, Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method, Acta Astronautica, 85 (2014) 19–24.

    Article  Google Scholar 

  8. Y. Tadi Beni, A. R. Vahdati and M. Abadyan, Using ALEFEM to simulate the instability of beam-type nano-actuator in the presence of electrostatic field and dispersion forces, IJST, Transaction of Mechanical Engineering, 37 (M1) (2013) 1–9.

    Google Scholar 

  9. M. Moghimi Zand, M. T. Ahmadian and B. Rashidian, Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces, Proc. Inst. Mech. Eng. Part C J.Mech. Eng. Sci., 224 (9) (2010) 2037–2047.

    Article  Google Scholar 

  10. W. H. Lin and Y. P. Zhao, Dynamics behavior of nanoscale electrostatic actuators, Chin. Phys. Lett., 20 (2003) 2070–2073.

    Article  Google Scholar 

  11. A. Ramezani, A. Alasty and J. Akbari, Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces, Int. J. Solids Struct., 44 (2007) 4925–4941.

    Article  MATH  Google Scholar 

  12. A. C. Eringen and D. B. G. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., 10 (1972) 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  13. U. B. C. O. Ejike, The plane circular crack problem in the linearized couple-stress theory, Int. J. Eng. Sci., 7 (1969) 947–961.

    Article  MATH  Google Scholar 

  14. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (8) (2003) 1477–1508.

    Article  MATH  Google Scholar 

  15. F. Yang, A. C. M. Chong, D. C. C. Lam and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struc., 39 (2002) 2731–2743.

    Article  MATH  Google Scholar 

  16. Y. Tadi Beni, A. Koochi and M. Abadyan, Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beamtype NEMS, Physica E, 43 (2011) 979–988.

    Article  Google Scholar 

  17. J. S. Steolken and A. G. Evans, A microbend test method for measuring the plasticity length scale, Acta Metall. Mater, 46 (1998) 5109–5115.

    Article  Google Scholar 

  18. S. L. Kong, S. J. Zhou, Z. F. Nie and K. Wang, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int. J. Eng. Sci., 47 (2009) 487–498.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. K. Park and X. L. Gao, Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microeng, 16 (2006) 2355–2359.

    Article  Google Scholar 

  20. W. Xia, L. Wang and L. Yin, Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration, Int. J. Eng. Sci., 48 (2010) 2044–2053.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Rokni, R. J. Seethaler, A. S. Milani, S. H. Hashemi and X. F. Li, Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation, Sens. Actuators, A, 190 (2013) 32–43.

    Article  Google Scholar 

  22. M. Baghani, Analytical study on size-dependent static pullin voltage of microcantilevers using the modified couple stress theory, Int. J. Eng. Sci., 54 (2012) 99–105.

    Article  MathSciNet  Google Scholar 

  23. A. Noghrehabadi, M. Eslami and M. Ghalambaz, Influence of size effect and elastic boundary condition on the pull-in instability of nano-scale cantilever beams immersed in liquid electrolytes, Int. J. Non Linear Mech., 52 (2013) 73–84.

    Article  Google Scholar 

  24. J. Zhang and Y. Fu, Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory, Meccanica, 47 (7) (2012) 1649–1658.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Kong, Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory, Appl. Math. Modell, 37 (12) (2013) 7481–7488.

    Article  Google Scholar 

  26. L. Yin, Q. Qian and L. Wang, Size effect on the static behavior of electrostatically actuated microbeams, Acta Mech. Sin, 27 (3) (2011) 445–451.

    Article  MATH  Google Scholar 

  27. M. Rahaeifard, M. H. Kahrobaiyan, M. T. Ahmadian and K. Firoozbakhsh, Size-dependent pull-in phenomena in nonlinear microbridges, Int. J. Mech. Sci., 54 (2012) 306–310.

    Article  Google Scholar 

  28. Y. Li, S. A. Meguid, Y. Fu and D. Xu, Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches, Acta Mech. (2013) DOI 10.1007/s00707-013-0831-4.

    Google Scholar 

  29. J. Abdi, A. Koochi, A. S. Kazemi and M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Mater. Struct., 20 (2011) 055011.

    Article  Google Scholar 

  30. J. K. Zhou, Differential transformation and its applications for electrical circuits (in Chinese), Huazhong University Press, Wuhan, China (1986).

    Google Scholar 

  31. L. Sun, R. P. S. Han, J. Wang and C. T. Lim, Modeling the size-dependent elastic properties of polymeric nanofibers, Nanotechnology, 19 (45) (2008) (8pp).

    Article  Google Scholar 

  32. W. Wang, Y. Huang, K. J. Hsia, K. X. Hu and A. Chandra, A study of microbend test by strain gradient plasticity, Int. J. Plasticity, 19 (2003) 365–382.

    Article  MATH  Google Scholar 

  33. Y. Tadi Beni, M. R. Abadyan and A. Noghrehabadi, Investigation of size effect on the pull-in instability of beam type NEMS under van der waals attraction, Procedia Engineering, 10 (2011) 1718–1723.

    Article  Google Scholar 

  34. A. Javed, One dimensional differential transform method for some higher order boundary value problems in finite domain, Int. J. Contemp. Math. Sci., 7 (6) (2012) 263–272.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Abadyan.

Additional information

Recommended by Associate Editor Sungsoo Rhim

Mohamadreza Abadyan received his Ph.D. in aerospace engineering from Sharif University of Technology, in 2010. His current research interests are the NEMS pull-in and mechanical behavior of polymer/composites.

Yaghoub Tadi Beni received his Ph.D. in mechanical engineering from Sharif University of Technology in 2009. Now he is an assistant professor of mechanical engineer at Shahrekord University. His main research interest is computational mechanics.

Iman karimipour received the B.S. and M.S. degrees in mechanical engineering from Shahrekord University, Shahrekord, Iran and Yazd University, Yazd, Iran in 2011 and 2014, respectively. His major research interests are in general areas of Nano/Micro Electromechanical Systems and Nano Technology with particular reference to Computational Mechanics, Applied Mathematics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beni, Y.T., Karimipöur, I. & Abadyan, M. Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory. J Mech Sci Technol 28, 3749–3757 (2014). https://doi.org/10.1007/s12206-014-0836-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0836-5

Keywords

Navigation