Skip to main content
Log in

Functioning and precipitation-displacement modelling of rainfall-induced deep-seated landslides subject to creep deformation

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

We propose an approach to study the hydro-mechanical behaviour and evolution of rainfall-induced deep-seated landslides subjected to creep deformation by combining signal processing and modelling. The method is applied to the Séchilienne landslide in the French Alps, where precipitation and displacement have been monitored for 20 years. Wavelet analysis is first applied on precipitation and recharge as inputs and then on displacement time-series decomposed into trend and detrended signals as outputs. Results show that the detrended displacement is better linked to the recharge signal than to the total precipitation signal. The infra-annual detrended displacement is generated by high precipitation events, whereas annual and multi-annual variations are rather linked to recharge variations and thus to groundwater processes. This leads to conceptualise the system into a two-layer aquifer constituted of a perched aquifer (reactive aquifer responsible of high-frequency displacements) and a deep aquifer (inertial aquifer responsible of low-frequency displacements). In a second step, a new lumped model (GLIDE) coupling groundwater and a creep deformation model is applied to simulate displacement on three extensometer stations. The application of the GLIDE model gives good performance, validating most of the preliminary functioning hypotheses. Our results show that groundwater fluctuations can explain the displacement periodic variations as well as the long-term creep exponential trend. In the case of deep-seated landslides, this displacement trend is interpreted as the consequence of the weakening of the rock mechanical properties due to repeated actions of the groundwater pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abellán A, Michoud C, Jaboyedoff M, et al. (2014) Predicting rates of displacement in continuously-moving mass movements. Proceedings of international association engineering geology conference. Springer, Torino (Italy)

  • Alfonsi P (1997) Relation entre les paramètres hydrologiques et la vitesse dans les glissements de terrains. Exemples de La Clapière et de Séchilienne Revue Française de Géotechnique 79:3–12

    Google Scholar 

  • Allen RE, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome

  • Angeli MG, Buma J, Gasparetto P, Pasuto A (1998) A combined hillslope hydrology/stability model for low-gradient clay slopes in the Italian dolomites. Eng Geol 49:1–13. doi:10.1016/S0013-7952(97)00033-1

    Article  Google Scholar 

  • Angeli MG, Gasparetto P, Bromhead E (2004) Strength-regain mechanisms in intermittently moving landslides. Proceedings of the 9th international symposium on landslides. Taylor & Francis, London, Rio de Janeiro, pp 689–696

  • Aragon Y (2011) Séries temporelles avec R: Méthodes et cas, Édition : Reprint. Springer Editions, Paris

  • Belle P, Aunay B, Bernardie S et al (2014) The application of an innovative inverse model for understanding and predicting landslide movements (Salazie cirque landslides, Reunion Island). Landslides 11:343–355. doi:10.1007/s10346-013-0393-5

    Article  Google Scholar 

  • Bernardie S, Desramaut N, Malet J-P, et al. (2014) Prediction of changes in landslide rates induced by rainfall. Landslides 1–14 10.1007/s10346-014-0495-8

  • Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Statist Sci 8:10–15. doi:10.1214/ss/1177011077

    Article  Google Scholar 

  • Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36. doi:10.1016/j.jhydrol.2005.07.007

    Article  Google Scholar 

  • Binet S, Guglielmi Y, Bertrand C, Mudry J (2007) Unstable rock slope hydrogeology: insights from the large-scale study of western Argentera-Mercantour hillslopes (South-East France). Bull Soc Geol Fr 178:159–168. doi:10.2113/gssgfbull.178.2.159

    Article  Google Scholar 

  • Bogaard T, Guglielmi Y, Marc V et al (2007) Hydrogeochemistry in landslide research: a review. Bull Soc Geol Fr 178:113–126. doi:10.2113/gssgfbull.178.2.113

    Article  Google Scholar 

  • Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44:1157–1180. doi:10.1139/T07-043

    Article  Google Scholar 

  • Brückl EP (2001) Cause-effect models of large landslides. Nat Hazards 23:291–314. doi:10.1023/A:1011160810423

    Article  Google Scholar 

  • Brückl E, Brunner FK, Lang E et al (2013) The Gradenbach Observatory—monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides 10:815–829. doi:10.1007/s10346-013-0417-1

    Article  Google Scholar 

  • Brunsden D (2001) A critical assessment of the sensitivity concept in geomorphology. CATENA 42:99–123. doi:10.1016/S0341-8162(00)00134-X

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Soukatchoff VM et al (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapière landslide (Southern Alps, France). J Hydrol 291:67–90. doi:10.1016/j.jhydrol.2003.12.013

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Viseur S, Garambois S (2014) Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening. Geophys Res Lett 41:61–66. doi:10.1002/2013GL058566

    Article  Google Scholar 

  • Černý V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45:41–51. doi:10.1007/BF00940812

    Article  Google Scholar 

  • Chanut M-A, Vallet A, Dubois L, Duranthon J-P (2013) Mouvement de versant de Séchilienne: relations entre déplacements de surface et précipitations – analyse statistique. Journées Aléa Gravitaire 2013. Grenoble, France

  • Charlier J-B, Bertrand C, Binet S et al (2010) Use of continuous measurements of dissolved organic matter fluorescence in groundwater to characterize fast infiltration through an unstable fractured hillslope (Valabres rockfall, French Alps). Hydrogeol J 18:1963–1969. doi:10.1007/s10040-010-0670-5

    Article  Google Scholar 

  • Charlier J-B, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64. doi:10.1016/j.jhydrol.2012.06.043

    Article  Google Scholar 

  • Charlier J-B, Ladouche B, Maréchal J-C (2015) Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. J Hydrol 523:610–623. doi:10.1016/j.jhydrol.2015.02.003

    Article  Google Scholar 

  • Chigira M (1992) Long-term gravitational deformation of rocks by mass rock creep. Eng Geol 32:157–184. doi:10.1016/0013-7952(92)90043-X

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A et al (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96. doi:10.1007/s10346-005-0049-1

    Article  Google Scholar 

  • Cowpertwait PSP, Metcalfe A (2009) Introductory time series with R, Édition : 2009. Springer, New York

  • Crosta GB, Frattini P, Castellanza R, et al. (2015) Investigation, monitoring and modelling of a rapidly evolving rockslide: the Mt. de la Saxe case study. In: Lollino G, Giordan D, Crosta GB, et al. (eds) Engineering geology for society and territory—volume 2. Springer International Publishing, pp 349–354

  • de Blasio FV (2011) Introduction to the physics of landslides: lecture notes on the dynamics of mass wasting. Springer, New York

    Book  Google Scholar 

  • De Moortel I, Munday SA, Hood AW (2004) Wavelet analysis: the effect of varying basic wavelet parameters. Sol Phys 222:203–228. doi:10.1023/B:SOLA.0000043578.01201.2d

    Article  Google Scholar 

  • Du J, Yin K, Lacasse S (2013) Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 10:203–218. doi:10.1007/s10346-012-0326-8

    Article  Google Scholar 

  • Duranthon JP, Effendiaz L, Memier M, Previtali I (2003) Apport des méthodes topographiques et topométriques au suivi du versant rocheux instable des ruines de Séchilienne. Association Francaise de Topographie 31–38

  • Durville JL, Kasperki J, Duranthon JP (2009) The Séchilienne landslide: monitoring and kinematics. First Italian Workshop on Landslides. Napoli, Italia, pp 174–180

  • Federico A, Popescu M, Elia G et al (2012) Prediction of time to slope failure: a general framework. Environ Earth Sci 66:245–256. doi:10.1007/s12665-011-1231-5

    Article  Google Scholar 

  • Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proceedings of the 4th International Conference and Field Workshop in Landslides, Tokyo. pp 145–150

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566. doi:10.5194/npg-11-561-2004

    Article  Google Scholar 

  • Guglielmi Y, Vengeon JM, Bertrand C et al (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull Eng Geol Environ 61:311–324

    Article  Google Scholar 

  • Guglielmi Y, Cappa F, Binet S (2005) Coupling between hydrogeology and deformation of mountainous rock slopes: insights from La Clapière area (southern Alps, France). Compt Rendus Geosci 337:1154–1163. doi:10.1016/j.crte.2005.04.016

    Article  Google Scholar 

  • Guillot S, di Paola S, Ménot R-P et al (2009) Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the external crystalline massifs of the western Alps. Bull Soc Geol Fr 180:483–500. doi:10.2113/gssgfbull.180.6.483

    Article  Google Scholar 

  • Huang A-B, Lee J-T, Ho Y-T et al (2012) Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements. Soils Found 52:737–747. doi:10.1016/j.sandf.2012.07.013

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. doi:10.1029/2000WR900090

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A (2003) Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. J Geophys Res 108:4677. doi:10.1029/2003JD003417

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. doi:10.1126/science.220.4598.671

    Article  Google Scholar 

  • Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31:13–24. doi:10.1080/02626668609491024

    Article  Google Scholar 

  • Klimeš J, Rowberry MD, Blahůt J et al (2011) The monitoring of slow-moving landslides and assessment of stabilisation measures using an optical–mechanical crack gauge. Landslides 9:407–415. doi:10.1007/s10346-011-0306-4

    Article  Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi:10.5194/adgeo-5-89-2005

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385–412. doi:10.1029/97RG00427

    Article  Google Scholar 

  • Labat D, Ababou R, Mangin A (2000) Rainfall–runoff relations for karstic springs part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238:149–178. doi:10.1016/S0022-1694(00)00322-X

    Article  Google Scholar 

  • Le Roux O (2009) Caractérisation de l’évolution géomorphologique de la basse vallée de la Romanche en relation avec les instabilités gravitaires de ses versants rocheux. Université Joseph-Fourier - Grenoble I

  • Le Roux O, Jongmans D, Kasperski J et al (2011) Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng Geol 120:18–31. doi:10.1016/j.enggeo.2011.03.004

    Article  Google Scholar 

  • Lebrouc V, Schwartz S, Baillet L et al (2013) Modeling permafrost extension in a rock slope since the Last Glacial Maximum: application to the large Séchilienne landslide (French Alps). Geomorphology 198:189–200. doi:10.1016/j.geomorph.2013.06.001

    Article  Google Scholar 

  • Li T, Chen M, Wang L, Zhou Y (1996) Time prediction of landslides using Verhulst inverse-function model. Proceedings of the 7th international symposium on landslides. Trondheim, pp 1289–1293

  • Liu X, Zeng X-H, Liu C-Y (2005) Research on artificial neural network-time series analysis of slope nonlinear displacement. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 24:3499–3504

    Google Scholar 

  • Madsen H (2007) Time series analysis, 1 edition. Chapman and Hall/CRC, Boca Raton

  • Malet J-P, van Asch TWJ, van Beek R, Maquaire O (2005) Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat Hazards Earth Syst Sci 5:71–85. doi:10.5194/nhess-5-71-2005

    Article  Google Scholar 

  • Maraun D, Kurths J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process Geophys 11:505–514. doi:10.5194/npg-11-505-2004

    Article  Google Scholar 

  • Massei N, Dupont JP, Mahler BJ et al (2006) Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J Hydrol 329:244–257. doi:10.1016/j.jhydrol.2006.02.021

    Article  Google Scholar 

  • Matsuura S, Asano S, Okamoto T (2008) Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Eng Geol 101:49–59. doi:10.1016/j.enggeo.2008.03.007

    Article  Google Scholar 

  • Ménot R-P (1988) The geology of the Belledonne massif: an overview (external crystalline massifs of the western Alps). Swiss J Geosci 68:529–540

    Google Scholar 

  • Meric O, Garambois S, Jongmans D et al (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can Geotech J 42:1105–1115. doi:10.1139/t05-034

    Article  Google Scholar 

  • Monjuvent G, Winistörfer J (1980) Glaciations quaternaires dans les Alpes franco-suisses et leur piedmont. France

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nieuwenhuis JD (1991) Variations in stability and displacements of a shallow seasonal landslide in varved clays. Utrecht University

  • Petley DN, Petley DJ (2006) On the initiation of large rockslides: perspectives from a new analysis of the Vaiont movement record. In: Evans SG, Mugnozza GS, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. Springer, Netherlands, pp 77–84

    Chapter  Google Scholar 

  • Pisani G, Castelli M, Scavia C (2010) Hydrogeological model and hydraulic behaviour of a large landslide in the Italian Western Alps. Nat Hazards Earth Syst Sci 10:2391–2406. doi:10.5194/nhess-10-2391-2010

    Article  Google Scholar 

  • Prokešová R, Medveďová A, Tábořík P, Snopková Z (2013) Towards hydrological triggering mechanisms of large deep-seated landslides. Landslides 10:239–254. doi:10.1007/s10346-012-0330-z

    Article  Google Scholar 

  • Rochet L, Giraud A, Antoine P, Évrard H (1994) La déformation du versant sud du Mont-Sec dans le secteur des ruines de Séchilienne (Isère). Bull Int Assoc Eng Geol 50:75–87. doi:10.1007/BF02594959

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40. doi:10.1007/s10040-002-0241-5

    Article  Google Scholar 

  • Saito M (1969) Research on forecasting the time of occurrence of slope failure. Railway Tech Res Ins Quarterly Rep 10:135–141

    Google Scholar 

  • Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14. doi:10.1007/s10346-004-0038-9

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO–monsoon system. J Clim 12:2679–2690. doi:10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2

    Article  Google Scholar 

  • Vallet A, Bertrand C, Fabbri O, Mudry J (2015a) An efficient workflow to accurately compute groundwater recharge for the study of rainfall-triggered deep-seated landslides, application to the Séchilienne unstable slope (western Alps). Hydrol Earth Syst Sci 19:427–449. doi:10.5194/hess-19-427-2015

    Article  Google Scholar 

  • Vallet A., Bertrand C., Mudry J., Bogaard T., Fabbri O., Baudement C., Régent B. (2015b) Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: a case study at the Séchilienne landslide, western Alps (France). Hydrogeology journal (in press)

  • Van Asch TWJ, Buma J, van Beek LP (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32. doi:10.1016/S0169-555X(99)00042-2

    Article  Google Scholar 

  • Van Asch TWJ, Van Beek LPH, Bogaard TA (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55. doi:10.1016/j.enggeo.2006.12.012

    Article  Google Scholar 

  • Vengeon JM (1998) Déformation et rupture des versants en terrain métamorphique anisotrope: Apport de l’étude des Ruines de Séchilienne. PhD thesis, Université Joseph Fourier I

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Engineering Geology 112:53–67. doi:10.1016/j.enggeo.2010.01.001

    Article  Google Scholar 

Download references

Acknowledgments

This research was fund by the programme SLAMS (Séchilienne Land movement: Multidisciplinary Studies) of the Agence Nationale de la Recherche. The meteorological and displacement data were supplied by CEREMA Lyon. The authors acknowledge the support of Jean-Pierre Duranthon and Marie-Aurélie Chanut from the CEREMA Lyon. We thank the editor for efficient handling of the manuscript. The manuscript was improved by detailed and constructive comments from three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vallet.

Appendix—wavelet analysis

Appendix—wavelet analysis

Continuous wavelet transforms

The continuous wavelet transform (CWT) W x (τ, a) of a time-series x(t) is given as follows:

$$ {W}_x\left(\tau,\ a\right)={\displaystyle \underset{-\infty }{\overset{+\infty }{\int }}}x(t){\varPsi}_{\tau, a}^{*}(t)\mathrm{d}t $$
(13)

where

$$ {\varPsi}_{\tau,\ a}=\frac{1}{\sqrt{a}}\varPsi \left(\frac{t-\tau }{a}\right) $$
(14)

represents a group of wavelet functions, Ψ τ, a , based on a mother wavelet Ψ which can be scaled and translated, modifying the scale parameter a and the translation parameter τ, respectively. (*) corresponds to the complex conjugate. Wavelet functions have multi-scale properties, dilating or contracting a (a > 1; a < 1). When a increases, the wavelet covers a higher signal window. It allows the large-scale behaviour of x to be extracted. Conversely, when a decreases, the analysed signal window decreases, allowing local variations of x to be studied. Wavelet transform is thus characterised on the space scale by a window decreasing in width when we focus on local-scale structures (high frequency) and widening when we focus on large-scale structures (low frequency).

As in the Fourier analysis, a wavelet power spectrum (WPS, also called a scalogram) P x (τ, a) can be defined as the wavelet transform of W x (τ, a):

$$ {P}_x\left(\tau,\ a\right)=\left({W}_x\left(\tau,\ a\right)\ {W}_x^{*}\left(\tau,\ a\right)\right)={\left|{W}_x\left(\tau,\ a\right)\right|}^2 $$
(15)

The choice of the appropriate analysis wavelet depends on the nature of the signal and on the type of information to be extracted from the time-series (De Moortel et al. 2004). Statistical significance level was estimated against a red noise model (Torrence and Compo 1998; Grinsted et al. 2004). As CWTs are applied to time-series of finite length, edge effects may appear on the scalogram, leading to the definition of a cone of influence (COI) as the region where such effects are relevant (Torrence and Compo 1998). The COI is marked as a shadow in the scalogram.

The covariance of two time-series x and y is estimated using a cross wavelet spectrum (XWT, also called a cross-scalogram) W xy (τ, a), which is defined as:

$$ {W}_{xy}\left(\tau,\ a\right)=\left({W}_x\left(\tau,\ a\right)\ {W}_y^{*}\left(\tau,\ a\right)\right) $$
(16)

XWT reveals an area with a high common power value, but Maraun and Kurths (2004) reported that it appears unsuitable for significance testing of the interrelation between two series. These authors recommend the use of wavelet coherence (WTC) which is a measure of the intensity of covariance of the two series in the time-scale space. Beginning with the approach of Torrence and Webster (1999), the WTC of two time-series x and y is defined as:

$$ {C}_{xy}^2\left(\tau,\ a\right)=\frac{{\left|S\left({a}^{-1}{W}_{xy}\left(\tau,\ a\right)\right)\right|}^2}{S\left({a}^{-1}{\left|{W}_x\left(\tau,\ a\right)\right|}^2\right)\cdot S\left({a}^{-1}{\left|{W}_y\left(\tau,\ a\right)\right|}^2\right)} $$
(17)

where S is a smoothing operator in both time and scale (see Torrence and Webster (1999) and Jevrejeva et al. (2003) for detailed mathematical expressions). The 5 % significance level of WTC against red AR1 noise is estimated using Monte Carlo methods (Grinsted et al. 2004).

Multi-resolution analysis

In order to implement the wavelet transform on sampled signals, the discrete wavelet transform (DWT) can be used to discretise the scale and location parameters j and k, respectively. The discrete form of the wavelet transform of a time-series x(t) is given according to Eq. (18):

$$ {W}_x\left({\tau}_0,\ {a}_0\right)={\displaystyle \sum_{-\infty}^{+\infty }}x(t){\varPsi}_{\tau_0,\ {a}_0}^{*}(t)\mathrm{d}t $$
(18)

where

$$ {\varPsi}_{\tau_0,\ {a}_0}=\frac{1}{\sqrt{a_0^j}}\varPsi \left(\frac{t-k{a}_0^j{\tau}_0}{a_0^j}\right) $$
(19)

with a j0 being the scale parameter, τ 0 the translation parameter and k and j integers. \( {\varPsi}_{\tau_0,\ {a}_0}^{*} \) corresponds to the complex conjugate of \( {\varPsi}_{\tau_0,\ {a}_0} \).

Multi-resolution analysis (MRA) is able to study signals represented at different resolutions. It can be used to decompose a signal into a progression of successive approximations and details in increasing order of resolution. Choosing particular values of a 0 and τ 0, in Eq. (8), namely a 0 = 2 and τ 0 = 1, corresponds to the dyadic case used in MRA. The aim is to reduce/increase the resolution by a factor of 2 between two scales. Therefore, the approximation of a signal x(t) at a resolution j, denoted by A x j and the detail of the same function at a resolution j, denoted by D x j, are defined by:

$$ {A}_x^j(t)={\displaystyle \sum_{k=-\infty}^{+\infty }}{C}_{j,k}{\Psi}_{j,k}(t) $$
(20)
$$ {D}_x^j(t)={\displaystyle \sum_{k=-\infty}^{+\infty }}{D}_{j,k}{\Phi}_{j,k}(t) $$
(21)

where Φ j,k (t) is a scaled and translated basis function called the scaling function, which is determined with Ψ j,k (t) when a wavelet is selected. C j,k is the scaling coefficient given the discrete sampled values of x(t) at resolution j and location k. It is calculated from Φ j,k (t) in a similar way for the wavelet coefficient D j,k from Ψ j,k (t) (see Kumar and Foufoula-Georgiou (1997) for detailed mathematical expressions).

The signal x(t) can be reconstructed from the approximation and detail components as:

$$ x(t)={A}_x^j(t)+{\displaystyle \sum_{j=1}^J}{D}_x^j(t) $$
(22)

where J is the highest resolution level considered. Since MRA ensures that variance is well captured in a limited number of resolution levels, analysis of energy distribution in the sampling time-series across scales gives a good idea of the energy distribution across frequencies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallet, A., Charlier, J.B., Fabbri, O. et al. Functioning and precipitation-displacement modelling of rainfall-induced deep-seated landslides subject to creep deformation. Landslides 13, 653–670 (2016). https://doi.org/10.1007/s10346-015-0592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0592-3

Keywords

Navigation