Skip to main content

Advertisement

Log in

Through birds’ eyes: insights into avian sensory ecology

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Sensory ecology investigates the information that underlies an animal’s interactions with its environment. A sensory ecology approach provides a framework in which to investigate a wide range of topics in ornithology. This review provides a range of examples of this approach. Discussed are some of the more general principles which apply with respect to the ways in which information from different sensory systems may complement each other, or information is traded-off within a sensory modality in the achievement of particular tasks. The emphasis is upon the task of foraging, but other behaviours, such as locomotion and predator detection, are also addressed. Examples discussed consider: (1) the perceptual challenges of nocturnal activity and how they are differently solved by information from different sensory system in owls, kiwi, oilbirds and penguins; (2) the use of tactile information in foraging and how this interacts with visual information in probing birds, and in skimmers; and (3) the visual information used to guide stealth foraging in herons, and how vision is influenced by the filter feeding techniques of ducks and flamingos. In addition, two case studies are discussed. These explore: (a) the restrictions on the information available to guide foraging in turbid waters by cormorants, and (b) the application of a sensory ecology approach to understanding why birds collide with artefacts, such as power lines and wind turbines, which intrude into the open airspace. Among the general conclusions discussed are: (1) the idea that all sensory systems are selective within their own modality and that the range of information that is available to a particular species have been tuned to particular perceptual challenges through natural selection; it is also argued that this tuning can take place at the individual species level such that there may be key differences in sensory information even among birds in the same genus; (2) sensory systems detect only a small part of the total information that is available in the environment; no species has available to it all the information that is potentially available in its environment; in essence, all species share the same planet but live in different worlds that are dictated by the information that their sensory systems extract from the environment; (3) there may be complex and subtle trade-offs between different types of sensory information; and (4) the overall conclusion is that the world through birds’ eyes is quite different from the world as seen through human eyes but there are many different “bird eye views”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archer SN, Djamgoz MBA, Loew E, Partridge JC, Vallerga S (1999) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht

    Google Scholar 

  • Avery ML, Springer PF, Dailey NS (1980) Avian mortality at man-made structures: an annotated bibliography. US Fish and Wildlife Service, Biological Services Program, National Power Plant Team

  • Bang BG, Wenzel BM (1985) Nasal cavity and olfactory system. In: King AS, McLelland J (eds) Form and function in birds. Academic, London, pp 195–225

    Google Scholar 

  • Bevanger K (1998) Biological and conservation aspects of bird mortality caused by electricity power lines: a review. Biol Conserv 86:67–76

    Article  Google Scholar 

  • Biewener AA (2003) Animal locomotion. Oxford University Press, Oxford

    Google Scholar 

  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (1997) Visual pigments and oil droplets from six classes of photoreceptors in the retinas of birds. Vision Res 37:2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Brooke MD, Hanley S, Laughlin SB (1999) The scaling of eye size with body mass in birds. Proc R Soc Lond B 266:405–412

    Article  Google Scholar 

  • Burkhardt D (1982) Birds, berries and uv–a note on some consequences of uv vision in birds. Naturwissenschaften 69:153–157

    Article  PubMed  CAS  Google Scholar 

  • Busnel RG, Fish JF (1980) Animal sonar systems. Plenum, New York

    Google Scholar 

  • Carboneras C (1992) Family Anatidae (Ducks, Geese and Swans). In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the world. Ostrich to Ducks, vol 1. Lynx, Barcelona, pp 536–628

    Google Scholar 

  • Carss DN, Bregnballe T, Keller TM, Van Eerden MR (2003) Reducing the conflict between cormorants Phalacrocorax carbo and fisheries on a pan-European scale: REDCAFE opens for business. Vogelwelt 124(Suppl 1):299–307

    Google Scholar 

  • Clarke DD, Forsyth RS, Wright RL (1995) The analysis of pre-accident sequences. Transport Research Laboratory, Crowthorne

    Google Scholar 

  • Cramp S, Simmons KEL (1983) The birds of the Western Palearctic, vol 3. Oxford University Press, Oxford

    Google Scholar 

  • Cronin TW (2008) Visual ecology. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses: a comprehensive reference, vision I, vol 1. Elsevier, Amsterdam, pp 211–245

    Chapter  Google Scholar 

  • Cunningham S (2010) Remote touch prey-detection by Madagascar crested ibises Lophotibis cristat urschi. J Avian Biol 41:350–353

    Article  Google Scholar 

  • Cunningham S, Castro I, Alley M (2007) A new prey-detection mechanism for kiwi (Apteryx spp.) suggests convergent evolution between paleognathous and neognathous birds. J Anat 211:493–502

    PubMed  Google Scholar 

  • Cunningham SJ, Castro I, Potter MA (2009) The relative importance of olfaction and remote touch in prey detection by North Island brown kiwis. Anim Behav 78:899–905

    Article  Google Scholar 

  • Cunningham SJ, Alley MR, Castro I, Potter MA, Pyne MJ (2010) Bill morphology of ibises suggests a remote-tactile sensory system for prey detection. Auk 127:308–316

    Article  Google Scholar 

  • Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. Adv Study Behav 29:159–214

    Article  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world. Ostrich to ducks, vol 1. Lynx, Barcelona

    Google Scholar 

  • Demery ZP, Chappell J, Martin GR (2011) Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus. Proc R Soc Lond B. doi:10.1098/rspb.2011.0374

  • Drewitt AL, Langston RHW (2008) Collision effects of wind-power generators and other obstacles on birds. Ann NY Acad Sci 1134:233–266

    Article  PubMed  Google Scholar 

  • Dusenbery D (1992) Sensory ecology: how organisms acquire and respond to information. Freeman, New York

    Google Scholar 

  • Emmerton J, Delius J (1980) Wavelength discrimination in the “visible” and ultraviolet spectrum by pigeons. J Comp Physiol A 141:47–52

    Article  Google Scholar 

  • Endler J, Westcott DA, Madden JR, Robson T (2005) Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59:1795–1818

    PubMed  Google Scholar 

  • Gaffney MF, Hodos W (2003) The visual acuity and refractive state of the American kestrel (Falco sparverius). Vision Res 43:2053–2059

    Article  PubMed  Google Scholar 

  • Garamszegi LA, Moller AP, Erritzoe J (2002) Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc R Soc Lond B 269:961–967

    Article  Google Scholar 

  • Ghim MM, Hodos W (2006) Spatial contrast sensitivity of birds. J Comp Physiol A 192:523–534

    Article  Google Scholar 

  • Gibson JJ (1986) The ecological approach to visual perception. Erlbaum, Hove

    Google Scholar 

  • Goldsmith TH (1980) Hummingbirds see near ultraviolet light. Science 207:786–788

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt KM (1985) Structure and function of avian somatosensory receptors. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, London, pp 375–461

    Google Scholar 

  • Goujon DE (1896) Sur un appareil de corpuscules tactiles situe dans le bec des perroquets. J Anat Physiol Norm Pathol Homme 6:449–455

    Google Scholar 

  • Grémillet D, Kuntz G, Delbart F, Mellet M, Kato A (2004) Linking the foraging performance of a marine predator to local prey abundance. Funct Ecol 18:793–801

    Article  Google Scholar 

  • Griffin DR, Thompson D (1982) Echolocation in cave swiftlets. Behavl Ecol Sociobiol 10:119–123

    Article  Google Scholar 

  • Guillemain M, Martin GR, Fritz H (2002) Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Funct Ecol 16:522–529

    Article  Google Scholar 

  • Hancock J, Kushlan J (1984) The herons handbook. Croom Helm, London

    Google Scholar 

  • Hills BL (1980) Vision, visibility and perception in driving. Perception 9:183–216

    Article  PubMed  CAS  Google Scholar 

  • Hirsch J (1982) Falcon visual sensitivity to grating contrast. Nature 300:57–58

    Article  Google Scholar 

  • Hodos W (1993) The visual capabilities of birds. In: Ziegler HP, Bischof HJ (eds) Avian vision, brain and behaviour. MIT Press, Cambridge, pp 63–76

    Google Scholar 

  • Holland RA, Wikelski M, Kummeth F, Bosque C (2009) The secret life of oilbirds: new insights into the movement ecology of a unique avian frugivore. PLoS ONE 4:e8264. doi:10.1371/journal.pone.0008264

    Article  PubMed  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin, pp 613–756

    Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B 364:2941–2955

    Article  CAS  Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196

    Article  PubMed  CAS  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Johnsgard PA (1993) Cormorants, darters and pelicans of the world. Smithsonian Institution Press, Washington

    Google Scholar 

  • Julesz B (1978) Global stereopsis: cooperative phenomena in stereoscoic depth perception. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology: perception, vol 8. Springer, Berling, pp 215–256

    Google Scholar 

  • Katzir G, Intrator N (1987) Striking of underwater prey by reef herons, Egretta gularis schistacea. J Comp Physiol A 160:517–523

    Article  Google Scholar 

  • Katzir G, Martin GR (1994) Visual fields in herons (Ardeidae)–panoramic vision beneath the bill. Naturwissenschaften 81:182–184

    Google Scholar 

  • Kear J, Duplaix-Hall N (1975) Flamingos. Poyser, Berkhampstead

    Google Scholar 

  • Klump G, Windt W, Curio E (1986) The great tit’s (Parus major) auditory resolution in azimuth. J Comp Physiol A 158:383–390

    Article  Google Scholar 

  • Knudsen EI (1980) Sound localisation in birds. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, Berlin, pp 289–322

    Chapter  Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427

    Article  PubMed  CAS  Google Scholar 

  • Kooyman GL, Cherel YC, Le Maho Y, Croxall JP, Thorson PH, Ridoux V, Kooyman CA (1992) Diving behavior and energetics during foraging cycles in king penguins. Ecol Monogr 62:143–163

    Article  Google Scholar 

  • Land MF (1999) The roles of head movements in the search and capture strategy of a tern (Aves, Laridae). J Comp Physiol A 184:265–272

    Article  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Laughlin SB (2001) The metabolic cost of information- a fundamental factor in visual ecology. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 170–185

    Google Scholar 

  • Lee DN (1980) The optic flow field: the foundation of vision. Philos Trans R Soc Lond B 290:169–179

    Article  CAS  Google Scholar 

  • Lee DN, Lishman R (1977) Visual control of locomotion. Scand J Psychol 18:224–230

    Article  PubMed  CAS  Google Scholar 

  • Lee DN, Young DS (1985) Visual timing of interceptive action. In: Ingle DJ, Jeannerod M, Lee DN (eds) Brain mechanisms and spatial vision. Nijhoff, Dordrecht, pp 1–30

    Chapter  Google Scholar 

  • Leys R, Cooper SJB, Strecker U, Wilkens H (2005) Regressive evolution of eye pigment gene in independently evolved eyeless subterranean diving beetles. Biol Lett 1:496–499

    Article  PubMed  CAS  Google Scholar 

  • Lilliendahl K, Solmundsson J (2006) Feeding ecology of sympatric European shags Phalacrocorax aristotelis and great cormorants P. Carbo in Iceland. Marine Biol 149:979–990

    Article  Google Scholar 

  • Locket NA (1977) Adaptations to the deep-sea environment. In: Crescitelli F (ed) Handbook of sensory physiology. Springer, Berlin, pp 67–192

    Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  • Lythgoe JN, Partridge JC (1989) Visual pigments and the acquisition of visual information. J Exp Biol 146:1–20

    PubMed  CAS  Google Scholar 

  • Manville AM (2005) Bird strikes and electrocutions at power lines, communication towers, and wind turbines: state of the art and state of the science–next steps toward mitigation. USDA Forest Service General Technical Report PSW-GTR-191

  • Marchant S, Higgins PJ (1990) Handbook of Australian, New Zealand and antarctic birds. Part A, vol 1. Oxford University Press, Melbourne

    Google Scholar 

  • Martin GR (1977) Absolute visual threshold and scotopic spectral sensitivity in the tawny owl Strix aluco. Nature 268:636–638

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1984) The visual fields of the tawny owl, Strix aluco L. Vision Res 24:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1985) Eye. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, London, pp 311–373

    Google Scholar 

  • Martin GR (1986a) Sensory capacities and the nocturnal habit of owls (Strigiformes). Ibis 128:266–277

    Article  Google Scholar 

  • Martin GR (1986b) The eye of a passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude, visual fields and schematic optics. J Comp Physiol A 159:545–557

    Article  Google Scholar 

  • Martin GR (1986c) Total panoramic vision in the mallard duck, Anas platyrhynchos. Vision Res 26:1303–1306

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1990) Birds by night. T & A D Poyser, London

    Google Scholar 

  • Martin GR (1993) Producing the image. In: Zeigler HP, Bischof H-J (eds) Vision, brain, and behaviour in birds. MIT Press, Cambridge, pp 5–23

    Google Scholar 

  • Martin GR (1994) Visual fields in woodcocks Scolopax rusticola (Scolopacidae; Charadriiformes). J Comp Physiol A 174:787–793

    Article  Google Scholar 

  • Martin GR (1999) Eye structure and foraging in king penguins Aptenodytes patagonicus. Ibis 141:444–450

    Article  Google Scholar 

  • Martin GR (2007) Visual fields and their functions in birds. J Ornithol 148(Suppl 2):547–562

    Article  Google Scholar 

  • Martin GR (2009) What is binocular vision for? A birds’ eye view. J Vis 9:1–19

    Article  PubMed  Google Scholar 

  • Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Article  Google Scholar 

  • Martin GR, Brooke MDL (1991) The eye of a procellariiform seabird, the Manx shearwater, Puffinus puffinus: visual fields and optical structure. Brain Behav Evol 37:65–78

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Katzir G (1994) Visual fields and eye movements in herons (Ardeidae). Brain Behav Evol 44:74–85

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Katzir G (1999) Visual field in short-toed eagles Circaetus gallicus and the function of binocularity in birds. Brain Behav Evol 53:55–66

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Osorio D (2008) Vision in birds. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses: a comprehensive reference, vision I, vol 1. Elsevier, Amsterdam, pp 25–52

    Chapter  Google Scholar 

  • Martin GR, Piersma T (2009) Vision and touch in relation to foraging and predator detection: insightful contrasts between a plover and a sandpiper. Proc R Soc Lond B 276:437–445

    Article  Google Scholar 

  • Martin GR, Portugal SJ (2011) Differences in foraging ecology determine variation in visual field in ibises and spoonbills (Threskiornithidae). Ibis. doi:10.1111/j.1474-919X-2011.01151.x

  • Martin GR, Shaw JM (2010) Bird collisions with power lines: failing to see the way ahead? Biol Conserv 143:2695–2702

    Article  Google Scholar 

  • Martin GR, Rojas LM, Ramirez Y, McNeil R (2004) The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften 91:26–29

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Jarrett N, Tovey P, White CR (2005) Visual fields in flamingos: chick-feeding versus filter-feeding. Naturwissenschaften 92:351–354

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Jarrett N, Williams M (2007a) Visual fields in blue ducks and pink-eared ducks: visual and tactile foraging. Ibis 149:112–120

    Article  Google Scholar 

  • Martin GR, McNeil R, Rojas LM (2007b) Vision and the foraging technique of skimmers (Rynchopidae). Ibis 149:750–759

    Article  Google Scholar 

  • Martin GR, Wilson KJ, Wild MJ, Parsons S, Kubke MF, Corfield J (2007c) Kiwi forego vision in the guidance of their nocturnal activities. PLoSOne 2(2):e198. doi:10.1371/journal.pone.0000198

  • Martin GR, White CR, Butler PJ (2008) Vision and the foraging technique of great cormorants Phalacrocorax carbo: pursuit or flush-foraging? Ibis 150:39–48

    Article  Google Scholar 

  • Meyer DB (1977) The avian eye and its adaptations. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin, pp 549–611

    Google Scholar 

  • Montgomerie R, Weatherhead PJ (1997) How do robins find worms? Anim Behav 54:143–151

    Article  PubMed  Google Scholar 

  • Norberg RA (1978) Skull asymmetry, ear structure and function and auditory localization in Tengmalm’s owl, Aegolius funereus. Philos Trans R Soc London B-Biol Sci 282B:325–410

    Article  Google Scholar 

  • Norberg UM (1990) Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Zoophysiology series, vol. 27. Springer, Berlin

    Google Scholar 

  • Olsson O, North AW (1997) Diet of the king penguin Aptenodytes patagonicus during three summers at South Georgia. Ibis 139:504–512

    Article  Google Scholar 

  • Orta J (1992) Family Phalacrocoracidae (Cormorants). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Ostrich to ducks, vol 1. Lynx, Barcelona, pp 326–353

    Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls. J Exp Biol 54:535–573

    PubMed  CAS  Google Scholar 

  • Piersma T, van Gils J, Wiersma P (1996) Family Scolopacidae (sandpipers, snipes and phalaropes). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Hoatzin to Auks, vol 3. Lynx, Barcelona, pp 444–533

    Google Scholar 

  • Piersma T, van Aelst R, Kurk K, Berkhoudt H, Maas LRM (1998) A new pressure sensory mechanisms for prey detection in birds: the use of principles of seabed dynamics? Proc R Soc Lond B 265:1377–1383

    Article  Google Scholar 

  • Pütz K, Bost CA (1994) Feeding behaviour of free-ranging king penguins (Aptenodytes patagonicus). Ecology 75:489–497

    Article  Google Scholar 

  • Pye JD (1985) Echolocation. In: Campbell B, Lack E (eds) A dictionary of birds. Poyser, Calton, pp 165–166

    Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Reymond L (1987) Spatial visual acuity of the falcon, Falco berigora: a behavioural, optical and anatomical investigation. Vision Res 27:1859–1974

    Article  PubMed  CAS  Google Scholar 

  • Rochon-Duvigneaud A (1943) Eyes and vision of vertebrates, Masson, Paris

  • Rogers LJ (2008) Development and function of lateralization in the avian brain. Brain Res Bull 76:235–244

    Article  PubMed  Google Scholar 

  • Rojas LM, Ramírez Y, McNeil R, Mitchell M, Marín G (2004) Retinal morphology and electrophysiology of two caprimulgiformes birds: the cave-living and nocturnal oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging common pauraque (Nyctidromus albicollis). Brain Behav Evol 64:19–33

    Article  PubMed  CAS  Google Scholar 

  • Schaefer HM, Schaefer V, Vorobyev M (2007) Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am Nat 169:S159–S169

    Article  PubMed  Google Scholar 

  • Sivak JG (1978) A survey of vertebrate strategies for vision in air and water. In: Ali MA (ed) Sensory ecology: review and perspectives. Plenum, New York, pp 503–520

    Google Scholar 

  • Snow DW (1961) The natural history of the oilbird, Steatornis caripensis, in Trinidad. 1. General behaviour and breeding habits. Zoologica 46:27–48

    Google Scholar 

  • Snyder AW, Laughlin SB, Stavenga DG (1977) Information capacity of eyes. Vision Res 17:1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Strod T, Arad Z, Izhaki I, Katzir G (2004) Cormorants keep their power: visual resolution in a pursuit-diving bird under amphibious and turbid conditions. Curr Biol 14:R376–R377

    Article  PubMed  CAS  Google Scholar 

  • Tinbergen N (1953) The herring gull's world. Collins, London

  • Tucker VA (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203:3745–3754

    PubMed  CAS  Google Scholar 

  • Tucker VA, Tucker AE, Akers K, Enderson JH (2000) Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J Exp Biol 203:3755–3763

    PubMed  CAS  Google Scholar 

  • Van den Hout PJ (2010) Struggle for safety: adaptive responses of wintering waders to their avian predators. PhD thesis. University of Groningen, Groningen

  • Van den Hout PJ, Spaans B, Piersma T (2008) Differential mortality of wintering shorebirds on the Banc d’Arguin, Mautitania, due to predation by large falcons. Ibis 150(Suppl. 1):219–230

    Article  Google Scholar 

  • Viitala J, Korpimaki E, Palokangas P, Koivula M (1995) Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature 373:425–426

    Article  CAS  Google Scholar 

  • Voisin C (1991) The herons of Europe. Poyser, London

    Google Scholar 

  • Vorobyev M, Marshall J, Osorio D, Hempel de Ibarra N (2001) Colourful objects through animal eyes. Color Res Appl 26:S214–S217

    Article  Google Scholar 

  • Voss J, Bischoff HJ (2009) Eye movements of laterally eyed birds are not independent. J Exp Biol 212:1568–1575

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Michigan

    Book  Google Scholar 

  • Wenzel B (1968) Olfactory prowess of Kiwi. Nature 220:1133–1134

    Article  PubMed  CAS  Google Scholar 

  • White CR, Day N, Butler PJ, Martin GR (2007) Vision and foraging in cormorants: more like herons than hawks? PLoSOne i2(7):e639. doi:10.1371/journal.pone.0000639

  • Wilson K-J (2004) Flight of the Huia: ecology and conservation of New Zealand’s frogs, reptiles, birds and mammals. Canterbury University Press, Christchurch

    Google Scholar 

  • Wiltschko R, Wiltschko W (1999) The orientation system of birds-1. Compass mechanisms. J Ornithol 140:1–40

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2006) Magnetoreception. BioEssays 28:157–168

    Article  PubMed  CAS  Google Scholar 

  • Wood CA (1917) The fundus occuli of birds especially as viewed by the ophthalmoscope. Lakeside, Chicago

    Google Scholar 

  • Wright AA (1972) The influence of ultraviolet radiation on the pigeon’s color discrimination. J Exp Anal Behav 17:325–337

    Article  PubMed  CAS  Google Scholar 

  • Wu L-Q, Dickman JD (2011) Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr Biol 21:1–6

    Article  PubMed  CAS  Google Scholar 

  • Zusi RL (1962) Structural adaptations of the head and neck in the black skimmer, Rynchops nigra. Publ Nuttall Orn Cl 3:1–101

    Google Scholar 

  • Zusi RL (1996) Family Rynchopidae (Skimmers). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Hoatzin to Auks, vol 3. Lynx, Barcelona, pp 668–677

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham R. Martin.

Additional information

Communicated by John Wingfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, G.R. Through birds’ eyes: insights into avian sensory ecology. J Ornithol 153 (Suppl 1), 23–48 (2012). https://doi.org/10.1007/s10336-011-0771-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0771-5

Keywords

Navigation