Skip to main content
Log in

The great tit's (Parus major) auditory resolution in azimuth

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    Two male great tits (Parus major) were trained to distinguish between sounds from two locations in an operant two alternative, forced choice procedure with positive reinforcement.

  2. 2.

    The angle between the two sound sources, as experienced from the position of the experimental subject, was varied. The angle at which the birds scored 65% correct responses in 60 choices (which corresponds toP = 0.03, two-tailed, binomial test) was defined as the minimum resolvable angle (MRA).

  3. 3.

    The resolution in azimuth for four natural vocalizations, the ‘seeet’ alarm call, the ‘scolding’ call, the mobbing call, and a song element, was 45°, 16°, 20°, and 18°, respectively (Fig. 2). The MRAs correlated well with the results from artificial stimuli with a comparable frequency.

  4. 4.

    MRAs for 300 ms sine wave stimuli were determined from 500 Hz to 8 kHz: The u-shaped function relating MRA with frequency had a minimum at 2 kHz, with a best MRA of 20°. At 500 Hz and 8 kHz the MRAs were 66.5° and 52°, respectively. MRA of a 300 ms white noise stimulus was 20.5° (Fig. 3).

  5. 5.

    The duration of the stimulus had no effect on the resolution in azimuth for a range of durations from 40 ms to 300 ms (Table 1). This suggests that the great tit may locate a sound source in an open loop fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MRA :

minimum resolvable angle

References

  • Brown CH (1982) Ventriloquial and locatable vocalizations in birds. Z Tierpsychol 59:338–350

    Google Scholar 

  • Coles RB, Lewis DB, Hill KG, Hutchings ME, Gower M (1980) Directional hearing in the Japanese quail (Coturnix c. japonica). II. Cochlear physiology. J Exp Biol 86:153–170

    Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic communication in birds: Production, perception, and design features of sounds. Academic Press, New York London, pp 95–130

    Google Scholar 

  • Gatehouse RW, Shelton BR (1978) Sound localization in the bobwhite quail (Colinus virginianus). Behav Biol 22:533–540

    Google Scholar 

  • Gompertz T (1961) The vocabulary of the Great Tit. Br Birds 54:359–394, 409–418

    Google Scholar 

  • Granit O (1941) Beiträge zur Kenntnis des Gehörsinns der Vögel. Ornis Fennica 18:49–71

    Google Scholar 

  • Hinde RA (1952) The behaviour of the great tit (Parus major) and related species. Behav Suppl 2:1–201

    Google Scholar 

  • Järvi T, Radesater T, Jakobsson S (1977) Individual recognition and variation in the great tit (Parus major). Biophon 5:4–9

    Google Scholar 

  • Jenkins WM, Masterton RB (1979) Sound localization in the pigeon (Columba livia). J Comp Physiol Psychol 93:403–413

    Google Scholar 

  • Klump GM (1984) Struktur und Funktion der LuftfeindAlarmrufe der Kohlmeise (Parus major) außerhalb der Brutzeit. Dissertation, Ruhr-University Bochum

  • Klump GM, Curio E (1983) Why don't spectra of songbirds' vocalizations correspond with the sensitivity maxima of their absolute threshold curves. Verh Dtsch Zool Ges 76:182

    Google Scholar 

  • Klump GM, Shalter MD (1984) Acoustic behaviour of birds and mammals in the predator context. I. Factors affecting the structure of alarm signals. II. The functional significance of alarm signals and their evolution. Z Tierpsychol 66:189–226

    Google Scholar 

  • Klump GM, Kretzschmar E, Curio E (1986) The hearing of an avian predator and its avian prey. Behav Ecol Sociobiol 18:317–323

    Google Scholar 

  • Knudsen EI (1980) Sound localization in birds. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York, pp 289–322

    Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133:13–21

    Google Scholar 

  • Konishi M (1973) Locatable and nonlocatable acoustic signals for barn owls. Am Nat 107:775–785

    Google Scholar 

  • Kretzschmar E (1982) Wie hört ein Sperber (Accipiter nisus L.) Alarmrufe seiner Beutevögel? Thesis, Ruhr-University Bochum

  • Kuhn GF (1977) Model for the interaural time difference in the azimuthal plane. J Acoust Soc Am 62:157–167

    Google Scholar 

  • Latimer W (1977) A comparative study of the songs and alarm calls of someParus species. Z Tierpsychol 45:414–433

    Google Scholar 

  • Lewis DB (1983) Directional cues for auditory localization. In: Lewis DB (ed) Bioacoustics, a comparative approach. Academic Press, New York London, pp 233–257

    Google Scholar 

  • Marler P (1955) Characteristics of some animal calls. Nature 176:6–8

    Google Scholar 

  • Marler P (1977) The structure of animal communication sounds. In: Bullock T (ed) Dahlem workshop on recognition of complex acoustic signals. Dahlem-Konferenzen, Abakon Verlagsgesellschaft, Berlin, pp 17–35

    Google Scholar 

  • Moiseff A, Konishi M (1981a) Neuronal and behavioural sensitivity to time differences in the owl. J Neurosci 1:40–48

    Google Scholar 

  • Moiseff A, Konishi M (1981b) The owl's interaural pathway is not involved in sound localization. J Comp Physiol 144:299–304

    Google Scholar 

  • Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathways. J Comp Physiol 136:183–190

    Google Scholar 

  • Sachs MB, Woolf NK, Sinnot JM (1980) Response properties of neurons in the avian auditory system: Comparisons with mammalian homologues and consideration of neural encoding of complex stimuli. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York, pp 323–353

    Google Scholar 

  • Schwartzkopff J (1950) Beitrag zum Problem des Richtungshörens bei Vögeln. Z Vergl Physiol 32:319–327

    Google Scholar 

  • Shalter MD (1978) Localization of passerine seeet and mobbing calls by goshawks and pygmy owls. Z Tierpsychol 46:260–267

    Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799

    Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786

    Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: Sound transmission and signal detection. In: Kroodsma DE, Miller EH (eds) Acoustic communication in birds: Production, perception and design features of sounds. Academic Press, New York London, pp 132–181

    Google Scholar 

  • Windt W (1985) Lokalisation von Kunst- und Naturlauten durch Kohlmeisen (Parus major). Thesis, Ruhr-University Bochum

  • Woodworth RS (1962) Experimental psychology. Rinehart & Winston, New York, pp 349–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klump, G.M., Windt, W. & Curio, E. The great tit's (Parus major) auditory resolution in azimuth. J. Comp. Physiol. 158, 383–390 (1986). https://doi.org/10.1007/BF00603622

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603622

Keywords

Navigation