Skip to main content
Log in

Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alfafara CG, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K (1992) Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 36:538–840

    CAS  Google Scholar 

  2. Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotech 62:239–243

    Article  CAS  Google Scholar 

  3. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536

    Article  PubMed  CAS  Google Scholar 

  4. Ge SL, Zhu TC, Li Y (2012) Expression of bacterial GshF in Pichia pastoris for glutathione production. Appl Environ Microbiol 78:5435–5439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Gopal S, Borovok I, Ofer A, Yanku M, Cohen G, Goebel W, Kreft J, Aharonowitz Y (2005) A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol 187:3839–3847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Gushima H, Miya T, Murata K, Kimura A (1983) Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. J Appl Biochem 5:43–52

    PubMed  CAS  Google Scholar 

  7. Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J (2004) Crystal structure of gamma-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci USA 101:15052–15057

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Janowiak BE, Griffith OW (2005) Glutathione synthesis in Streptococcus agalactiae. One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem 280:11829–11839

    Article  PubMed  CAS  Google Scholar 

  9. Johnston WA, Stewart M, Lee P, Cooney MJ (2003) Tracking the acetate threshold using DO-transient control during medium and high cell density cultivation of recombinant Escherichia coli in complex media. Biotechnol Bioeng 84:314–323

    Article  PubMed  CAS  Google Scholar 

  10. Kono G, Harada M, Sugisaki K, Nishida M (1977) High glutathione-containing yeast. JP patent 52(125):687

    Google Scholar 

  11. Li W, Li ZM, Yang JH, Ye Q (2011) Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. J Biotechnol 154:261–268

    Article  PubMed  CAS  Google Scholar 

  12. Li Y, Chen J, Mao YY, Lun SY, Koo YM (1998) Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli. Process Biochem 33:709–714

    Article  CAS  Google Scholar 

  13. Li Y, Wei GY, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  PubMed  CAS  Google Scholar 

  14. Liang GB, Du GC, Chen J (2009) Salt-induced osmotic stress for glutathione overproduction in Candida utilis. Enzym Microb Technol 45:324–329

    Article  CAS  Google Scholar 

  15. Liao XY, Shen W, Chen J, Li Y, Du GC (2006) Improved glutathione production by gene expression in Escherichia coli. Lett Appl Microbiol 43:211–214

    Article  PubMed  CAS  Google Scholar 

  16. Lin J, Liao XY, Du GC, Chen J (2009) Enhancement of glutathione production in a coupled system of adenosine deaminase-deficient recombinant Escherichia coli and Saccharomyces cerevisiae. Enzym Microb Technol 44:269–273

    Article  CAS  Google Scholar 

  17. Lin J, Liao XY, Zhang J, Du GC, Chen J (2009) Enhancement of glutathione production with a tripeptidase-deficient recombinant Escherichia coli. J Ind Microbiol Biotechnol 36(12):1447–1452

    Article  PubMed  CAS  Google Scholar 

  18. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  19. Murata K, Kimura A (1982) Cloning of a gene responsible for the biosynthesis of glutathione in Escherichia coli B. Appl Environ Microbiol 44:1444–1448

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Murata K, Tani K, Kato J, Chibata I (1981) Glycolytic pathway as an ATP generation system and its application to the production of glutathione and NADP. Enzym Microb Technol 3:233–242

    Article  CAS  Google Scholar 

  21. Nie W, Wei GY, Du GC, Li Y, Chen J (2005) Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy. Lett Appl Microbiol 40:378–384

    Article  PubMed  CAS  Google Scholar 

  22. Shiloach J, Fass R (2005) Growing E. coli to high cell density—A historical perspective on method development. Biotechnol Adv 23:345–357

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu H, Araki K, Shioya S, Suga K (1991) Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol Bioeng 38:196–205

    Article  PubMed  CAS  Google Scholar 

  24. Zawada J, Swartz J (2005) Maintaining rapid growth in moderate-density Escherichia coli fermentations. Biotechnol Bioeng 89:407–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation for Young Scientist of China (Grant No. 21406065), the Fundamental Research Funds for the Central Universities (Grant No. 222201313007 & 22A201514042), the National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204) and Shanghai Committee of Science and Technology (Grant No. 13DZ1930202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wu or Zhimin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, C., Wu, H. et al. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. J Ind Microbiol Biotechnol 43, 45–53 (2016). https://doi.org/10.1007/s10295-015-1707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1707-5

Keywords

Navigation