Skip to main content

Advertisement

Log in

Glutathione: a review on biotechnological production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This Mini-Review summarizes the historic developments and technological achievements in the biotechnological production of glutathione in the past 30 years. Glutathione is the most abundant non-protein thiol compound present in living organisms. It is used as a pharmaceutical compound and can be used in food additives and the cosmetic industries. Glutathione can be produced using enzymatic methods in the presence of ATP and its three precursor amino acids (l-glutamic acid, l-cysteine, glycine). Alternatively, glutathione can be produced by direct fermentative methods using sugar as a starting material. In the latter method, Saccharomyces cerevisiae and Candida utilis are currently used to produce glutathione on an industrial scale. At the molecular level, the genes gshA and gshB, which encode the enzymes γ-glutamylcysteine synthetase and glutathione synthetase, respectively, have been cloned from Escherichia coli and over-expressed in E. coli, S. cerevisiae, and Lactococcus lactis. It is anticipated that, with the design and/or discovery of novel producers, the biotechnological production of glutathione will be further improved to expand the application range of this physiologically and medically important tripeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajinomoto Co. (1982a) Production of glutathione. JP patent 57,002,698

  • Ajinomoto Co. (1982b) Production of glutathione. JP patent 57,005,699

  • Ajinomoto Co. (1983) Microbial production of glutathione. JP patent 58,016,694

  • Ajinomoto Co. (1984) Production of glutathione. JP patent 59,156,298

  • Alfafara CG, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K (1992a) Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 36:538–540

    Article  CAS  Google Scholar 

  • Alfafara CG, Miura K, Shimizu H, Shioya S, Suga K (1992b) Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 37:141–146

    Article  CAS  Google Scholar 

  • Alfafara CG, Miura K, Shimizu H, Shioya S, Suga K, Suzuki K (1993) Fuzzy control of ethanol concentration and its application to maximum glutathione production in yeast fed batch culture. Biotechnol Bioeng 41:493–501

    CAS  Google Scholar 

  • Bloch K (1949) The synthesis of glutathione in isolated liver. J Biol Chem 179:1245–1254

    CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  CAS  PubMed  Google Scholar 

  • Chibata I, Kato J, Murata K (1979a) Glutathione. JP patent 54,122,793

  • Chibata I, Kato J, Murata K (1979b) Glutathione. JP patent 54,138,190

  • Douglas KT (1989) Chemical synthesis of glutathione and analogs. Coenzymes Cofactors 3:243–279

    CAS  Google Scholar 

  • Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129

    CAS  PubMed  Google Scholar 

  • Fujio T, Hayashi M, Tomiyoshi Y, Ozaki A (1985) Compound from its precursor using the enzymic activity of a bacterium. EP patent 146,265

  • Gushima H, Miya T, Murata K, Kimura A (1983) Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. J Appl Biochem 5:43–52

    CAS  PubMed  Google Scholar 

  • Hamada S, Tanaka H, Sakato K (1983) Glutathione. EP patent 79,241

  • Hamazawa K, Maegawa H, Furue S (1998) NAD and glutathione high content yeast. JP patent 10,191,963

  • Harington CR, Mead TH (1935) Synthesis of glutathione. Biochem J 29:1602–1611

    CAS  Google Scholar 

  • Hino T, Harada M, Maekawa H (1985) Production of high-glutathione-containing yeast cells. JP patent 60,156,379

  • Hirakawa K, Nomura K, Kato M (1985) Lactic acid for high yield glutathione production by yeasts. JP patent 60,244,284

  • Ikeno Y, Tanno K, Omori I, Yamada R (1977) Glutathione. JP patent 52,087,296

  • Ishii S, Miyajima R (1989) Glutathione manufacture by cultivation of Saccharomyces in a synthetic medium. JP patent 1,141,591

  • Kawamura M, Hamada S, Sakado K (1985) Glutathione by fermentation. JP patent 60,248,199

  • Kimura A, Murata K (1983) Microorganisms of the genus Escherichia, hybrid DNA for use in their production and the use of the microorganisms in the preparation of glutathione. EP patent 71,486

  • Kimura H, Inoe Y, Kobayashi S (1996) Glutathione manufacture with recombinant Saccharomyces. JP patent 8,070,884

  • Kinoshita K, Machida M, Oka S, Yamamoto Y, Tomikanehara H (1986) Manufacture of yeast cells containing high glutathione. JP patent 61,192,282

  • Kohjin Co. (1984) Glutathione by fermentation. JP patent 59,151,894

  • Kono G, Harada M, Sugisaki K, Nishida M (1977) High glutathione-containing yeast. JP patent 52,125,687

  • Kyowa Hakko Kogyo Co. (1984) Yield increase in glutathione produced by yeasts. JP patent 59,034,899

  • Kyowa Hakko Kogyo Co. (1985a) Microbial production of glutathione. JP patent 60,027,396

  • Kyowa Hakko Kogyo Co. (1985b) Production of glutathione. JP patent 60,027,397

  • Langer RS, Hamilton BK, Gardner CR (1976) Enzymatic regeneration of ATP. AIChE J 22:1079–1090

    Article  CAS  Google Scholar 

  • Li Y, Chen J, Mao YY, Lun SY, Koo YM (1998) Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli. Process Biochem 33:709–714

    Article  CAS  Google Scholar 

  • Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D (2004) Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol (in press)

  • Liu CH, Hwang C, Liao CC (1999) Medium optimization for glutathione production by Saccharomyces cerevisiae. Process Biochem 34:17–23

    Article  CAS  Google Scholar 

  • Matsuyama A, Nakano E, Watabe K, Murata K, Kimura H (1989) Recombinant DNA encoding gamma-glutamylcysteine synthetase and glutathione synthetase, its preparation, and use for manufacturing glutathione with Escherichia. JP patent 1,228,473

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Miwa N (1976) Glutathione. JP patent 51,144,789

  • Miwa N (1978) Production of glutathione by fermentation. JP patent 53,094,090

  • Miwa N, Tajima S (1978a) Production of glutathione by fermentation. JP patent 53,094,088

  • Miwa N, Tajima S (1978b) Production of glutathione by fermentation. JP patent 53,094,089

  • Miyamoto I, Miwa N (1977) Production of glutathione by immobilized glutathione synthetase. JP patent 52,051,089

  • Miyamoto S, Mitsuba N, Takemoto H (1977) Glutathione by cultivating yeast on methanol. JP patent 52,156,994

  • Miyamoto T, Miwa N, Takemoto T (1978) Glutathione. JP patent 53,009,393

  • Murata K (1989) Immobilization, chemical and industrial application, and biosynthetic preparation of glutathione and related compounds. Coenzymes Cofactors 3:187–242

    CAS  Google Scholar 

  • Murata K (1994) Glutathione and its derivatives: produced by recombinant Escherichia coli and Saccharomyces cerevisiae. Bioprocess Technol 19:159–183

    CAS  PubMed  Google Scholar 

  • Murata K, Kimura A (1982) Some properties of glutathione biosynthesis-deficient mutants of Escherichia coli B. J Gen Microbiol 128:1047–1052

    CAS  PubMed  Google Scholar 

  • Murata K, Kimura A (1990) Overproduction of glutathione and its derivatives by genetically engineered microbial cells. Biotechnol Adv 8:59–96

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Tani K, Kato J, Chibata I (1981a) Glutathione production by immobilized Saccharomyces cerevisiae cells containing an ATP regeneration system. Eur J Appl Microbiol Biotechnol 11:72–77

    CAS  Google Scholar 

  • Murata K, Tani K, Kato J, Chibata I (1981b) Glycolytic pathway as an ATP generation system and its application to the production of glutathione and NADP. Enzyme Microb Technol 3:233–242

    Article  CAS  Google Scholar 

  • Murata K, Tani K, Kato J, Chibata I (1981c) Isolation of Escherichia coli B mutant deficient in glutathione biosynthesis. Agric Biol Chem 45:2131–2132

    CAS  Google Scholar 

  • Murata K, Miya T, Gushima H, Kimura A (1983) Cloning and amplification of a gene for glutathione synthetase in Escherichia coli B. Agric Biol Chem 47:1381–1383

    CAS  Google Scholar 

  • Nippon Zeon Co. (1983) Glutathione production. JP patent 58,146,294

  • Nomura K, Sakaguchi S, Hirakawa K, Kato M (1985) Glutathione by fermentation. JP patent 60,244,299

  • Ochiai H (1987) Production of glutathione by photofermentation: use of thermophilic cyanobacteria. Bio Ind 4:189–197

    CAS  Google Scholar 

  • Ohtake Y, Watanabe K, Tezuka H, Ogata T, Yabuuchi S, Murata K, Kimura A (1988) The expression of gamma-glutamylcysteine synthetase gene of Escherichia coli in Saccharomyces cerevisiae. Agric Biol Chem 52:2753–2762

    CAS  Google Scholar 

  • Ohtake Y, Watanabe K, Tezuka H, Ogata T, Yabuuchi S, Murata K, Kimura A (1989) Expression of glutathione synthetase gene of Escherichia coli B in Saccharomyces cerevisiae. J Ferment Bioeng 68:390–399

    Article  CAS  Google Scholar 

  • Omura F, Maemura H, Shibano y (1998) Recombinant preparation of glutathione using Saccharomyces cerevisiae mutants having single point mutations in gene MET4 that impair the transcriptional repression of MET genes. JP patent 10,033,161

  • Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19–39

    Article  CAS  PubMed  Google Scholar 

  • Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26:737–742

    Article  CAS  PubMed  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    Article  CAS  PubMed  Google Scholar 

  • Penninckx MJ, Elskens MT (1993) Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol 34:239–301

    CAS  PubMed  Google Scholar 

  • Richman PG, Meister A (1975) Regulation of gamma-glutamycystein synthetase b nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422

    CAS  PubMed  Google Scholar 

  • Sakato K, Tanaka H (1992) Advanced control of glutathione fermentation process. Biotechnol Bioeng 40:904–912

    CAS  Google Scholar 

  • Sawa Y, Shindo H, Nishimura S, Ochiai H (1986) Photosynthetic glutathione production using intact cyanobacterial cells. Agric Biol Chem 50:1361–1363

    CAS  Google Scholar 

  • Schmidt MG, Konetzka WA (1986) Glutathione overproduction by selenite resistant Escherichia coli. Can J Microbiol 32:825–827

    CAS  PubMed  Google Scholar 

  • Shimizu H, Araki K, Shioya S, Suga K (1991) Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol Bioeng 38:196–205

    CAS  Google Scholar 

  • Shimosaka M, Fukuda Y, Murata K, Kimura A (1982) Application of hybrid plasmids carrying glycolysis genes to ATP production by Escherichia coli. J Bacteriol 152:98–103

    CAS  PubMed  Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Matsubayashi T (1980) Glutathione. JP patent 55,000,019

  • Takesue H, Fujii K, Miura Y (1979) Glutathione. JP patent 54,086,691

  • Tanno K, Omori I, Yamada R, Ikeno Y (1976) Glutathione. JP patent 51,139,685

  • Tanno K, Omori I, Yamada R (1979) Nicotinamide adenine dinucleotide and glutathione. JP patent 54,107,594

  • Tezuka H, Otake Y, Yabuchi S, Kimura H (1987) A novel Saccharomyces promoter and its use in glutathione biosynthesis. JP patent 62,275,685

  • Udeh KO, Achremowicz B (1997) High-glutathione containing yeast: optimization of production. Acta Microbiol Pol 46:105–114

    CAS  PubMed  Google Scholar 

  • Watanabe K, Yamano Y, Murata K, Kimura A (1986) Glutathione production by Escherichia coli cells with hybrid plasmid containing tandemly polymerized genes for glutathione synthetase. Appl Microbiol Biotechnol 24:375–378

    CAS  Google Scholar 

  • Watanabe K, Kato N, Yoshida N (1989) Glutathione, its manufacture with yeast, and the effects of complex amino acids in medium. JP patent 1,148,181

  • Wei G, Li Y, Du G, Chen J (2003a) Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol Lett 25:887–890

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003b) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem 38:1133–1138

    Article  CAS  Google Scholar 

  • Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Google Scholar 

  • Yamaoka Y, Takimura O (1990) Manufacture of glutathione with green algae Dunaliella. JP patent 2,234,691

  • Yokozeki K, Takeuchi H, Hirose Y (1985) Glutathione. JP patent 60,160,894

Download references

Acknowledgements

The authors thank Dr. Paul W. O’Toole for critically reading this manuscript. This study was supported by the National Science Foundation of China (contract no. 30300009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wei, G. & Chen, J. Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66, 233–242 (2004). https://doi.org/10.1007/s00253-004-1751-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1751-y

Keywords

Navigation