Skip to main content
Log in

Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l−1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol−1 added cysteine and a productivity of 6.1 ± 0.0 g l−1 h−1. This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carmel-Harel, O., & Storz, G. (2000). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annual Review of Microbiology, 54, 439–461.

    Article  CAS  Google Scholar 

  2. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640–6645.

    Article  CAS  Google Scholar 

  3. Ishii, S., & Miyajima, R. (1989). Glutathione manufacture by cultivation of Saccharomyces in a synthetic medium. Jpn. Patent, 1, 141–591.

    Google Scholar 

  4. Janowiak, B. E., & Griffith, O. W. (2005). Glutathione synthesis in Streptococcus agalactiae. One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. The Journal of Biological Chemistry, 280, 11829–11839.

    Article  CAS  Google Scholar 

  5. Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81, 2506–2514.

    Article  CAS  Google Scholar 

  6. Kameda, A., Shiba, T., Kawazoe, Y., Satoh, Y., Ihara, Y., Munekata, M., Ishige, K., & Noguchi, T. (2001). A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. Journal of Bioscience and Bioengineering, 91, 557–563.

    Article  CAS  Google Scholar 

  7. Knorr, R., Ehrmann, M. A., & Vogel, R. F. (2001). Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. Microbiological Research, 156, 267–277.

    Article  CAS  Google Scholar 

  8. Kuroda, A., & Kornberg, A. (1997). Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 94, 439–442.

    Article  CAS  Google Scholar 

  9. Li, W., Li, Z., Yang, J., & Ye, Q. (2011). Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. Journal of Biotechnology, 154, 261–268.

    Article  CAS  Google Scholar 

  10. Li, Y., Wei, G., & Chen, J. (2004). Glutathione: a review on biotechnological production. Applied Microbiology and Biotechnology, 66, 233–242.

    Article  CAS  Google Scholar 

  11. Liedschulte, V., Wachter, A., Zhigang, A., & Rausch, T. (2010). Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnology Journal, 8, 807–820.

    Article  CAS  Google Scholar 

  12. Matsuyama A, Hideko O., Kitao S. (1994) Novel recombinant DNA and method for production of physiologically active substance. Patent EP387067B1.

  13. Meister, A., & Anderson, M. E. (1983). Glutathione. Annual Review of Biochemistry, 52, 711–760.

    Article  CAS  Google Scholar 

  14. Misra, I., & Griffith, O. W. (1998). Expression and purification of human gamma-glutamylcysteine synthetase. Protein Expression and Purification, 13, 268–276.

    Article  CAS  Google Scholar 

  15. Murata, K., Tani, K., Kato, J., & Chibata, I. (1980). Continuous production of glutathione using immobilized microbial cells containing ATP generating system. Biochimie, 62, 347–352.

    Article  CAS  Google Scholar 

  16. Penninckx, M. J., & Elskens, M. T. (1993). Metabolism and functions of glutathione in micro-organisms. Advances in Microbial Physiology, 34, 239–301.

    Article  CAS  Google Scholar 

  17. Richman, P. G., & Meister, A. (1975). Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. The Journal of Biological Chemistry, 250, 1422–1426.

    CAS  Google Scholar 

  18. Sato, M., Masuda, Y., Kirimura, K., & Kino, K. (2007). Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis. Journal of Bioscience and Bioengineering, 103, 179–184.

    Article  CAS  Google Scholar 

  19. Tao, R., Jiang, Y., Zhu, F., & Yang, S. (2014). A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH-regeneration system based on L-leucine dehydrogenase and formate dehydrogenase. Biotechnology Letters, 36, 835–841.

    Article  CAS  Google Scholar 

  20. Zhu, L., Tao, R., Wang, Y., Jiang, Y., Lin, X., Yang, Y., Zheng, H., Jiang, W., & Yang, S. (2011). Removal of L-alanine from the production of L-2-aminobutyric acid by introduction of alanine racemase and D-amino acid oxidase. Applied Microbiology and Biotechnology, 90, 903–910.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Yang.

Ethics declarations

Funding

This work was supported by the National Basic Research Program of China (973: 2014CB745101), Knowledge Innovation Program (KSZD-EW-Z-019), and Science and Technology Service Network Initiative (KFJ-EW-STS-030) of the Chinese Academy of Sciences, and Shanghai Scientific research project (14XD1424900).

Electronic Supplementary Material

ESM 1

(PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tao, R., Shen, Z. et al. Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation. Appl Biochem Biotechnol 180, 1446–1455 (2016). https://doi.org/10.1007/s12010-016-2178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2178-5

Keywords

Navigation